Sanguramath Rajashekharayya A, Laadan Boaz, Raz Nadav, Katalan Avishay, Benarroch Daniel J, Franco Ariel
NSC-Nanosono Corporation Ltd, Hakidma 7, Yokneam-2069200, Israel.
Nanotechnology. 2021 Mar 5;32(21):215603. doi: 10.1088/1361-6528/abe826.
Inappropriate and disproportionate use of antibiotics have led to a rapid increase in antibacterial resistance. Therefore, alternative antibacterial strategies and solutions are sought to overcome any form of resistance to effectively treat and/or prevent the spread of infections. In this study, we report an eco-friendly and scalable approach to produce highly antibacterial CuOZnO nanocomposite and its inclusion in medical devices and acrylic paint. Nanocomposite has nanoporous structure composed of primary nanocrystallites of Zn ion doped CuO (∼15 nm) phase and pure ZnO (∼10 nm) phase. Nanocomposite exhibit strong antibacterial activity against broad spectrum of bacteria relevant to the biomedical and food industries. At 100 ppm concentration and 2 h contact period, over 5 log reduction was observed against Escherichia coli, Listeria monocytogenes, Methicillin-resistant Staphylococcus aureus and Salmonella enterica Serovar Typhimurium. Nanocomposite incorporated in medical gauze, topical formulation, and acrylic paint exhibit over 4 log reduction against S. aureus. Bactericidal activity is governed by synergetic combination of electrostatic interaction of nanocomposite with bacterial cell envelope and simultaneous generation of reactive oxygen species. Results described here would be of great benefit in developing medical devices, coatings, and paints to eradicate the growth of a wide range of bacterial pathogens.
抗生素的不当和过度使用导致了抗菌耐药性的迅速增加。因此,人们正在寻求替代抗菌策略和解决方案,以克服任何形式的耐药性,从而有效治疗和/或预防感染的传播。在本研究中,我们报告了一种环保且可扩展的方法,用于生产具有高度抗菌性的CuOZnO纳米复合材料,并将其应用于医疗设备和丙烯酸涂料中。纳米复合材料具有纳米多孔结构,由锌离子掺杂的CuO(约15纳米)相和纯ZnO(约10纳米)相的初级纳米微晶组成。纳米复合材料对与生物医学和食品工业相关的广谱细菌表现出强大的抗菌活性。在100 ppm浓度和2小时接触时间下,观察到对大肠杆菌、单核细胞增生李斯特菌、耐甲氧西林金黄色葡萄球菌和鼠伤寒沙门氏菌的对数减少超过5。掺入医用纱布、局部制剂和丙烯酸涂料中的纳米复合材料对金黄色葡萄球菌的对数减少超过4。杀菌活性由纳米复合材料与细菌细胞膜的静电相互作用以及活性氧的同时产生的协同组合所控制。这里描述的结果对于开发医疗设备、涂层和涂料以根除多种细菌病原体的生长将具有极大的益处。