Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China.
Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China.
Technol Health Care. 2021;29(S1):427-432. doi: 10.3233/THC-218040.
Placental growth factor (PlGF), one of the biomarkers, has a certain predictive effect on hypertensive disorders in pregnancy (HDP).
To study the HDP prediction effect of different methods for variable selection and modeling for models containing PlGF.
For the model containing PlGF, the appropriate range of PlGF parameters needed to be selected. Step-logistic regression and lasso were used to compare the model effect of twice range selection. The PlGF model with good predictive effect and appropriate detecting gestational age was selected for the final prediction.
The effect of the model containing PlGF tested at 15-16 weeks was better than the PlGF value without comprehensive screening. The sensitivity of both methods was over 92%. By comprehensive comparison, the final model of lasso method in this study was more effective.
In this study, a variety of methods were used to screen models containing PlGF parameters. According to clinical needs and model effects, the optimal HDP prediction model with PlGF parameters in the second trimester of 15-26 weeks of pregnancy was finally selected.
胎盘生长因子(PlGF)是生物标志物之一,对妊娠高血压疾病(HDP)有一定的预测作用。
研究包含 PlGF 的模型中不同变量选择和建模方法对 HDP 的预测效果。
对包含 PlGF 的模型,选择合适的 PlGF 参数范围。采用逐步逻辑回归和套索法比较两次范围选择的模型效果,选择预测效果好、检测孕周合适的 PlGF 模型进行最终预测。
15-16 周检测包含 PlGF 的模型效果优于未进行综合筛查的 PlGF 值,两种方法的灵敏度均超过 92%。综合比较,本研究中套索法的最终模型效果更优。
本研究采用多种方法筛选包含 PlGF 参数的模型,根据临床需求和模型效果,最终选择了妊娠 15-26 周的 PlGF 参数的最佳 HDP 预测模型。