Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
Bioinformatics. 2021 Sep 29;37(18):3064-3066. doi: 10.1093/bioinformatics/btab151.
We achieve a significant improvement in thermodynamic-based flux analysis (TFA) by introducing multivariate treatment of thermodynamic variables and leveraging component contribution, the state-of-the-art implementation of the group contribution methodology. Overall, the method greatly reduces the uncertainty of thermodynamic variables.
We present multiTFA, a Python implementation of our framework. We evaluated our application using the core Escherichia coli model and achieved a median reduction of 6.8 kJ/mol in reaction Gibbs free energy ranges, while three out of 12 reactions in glycolysis changed from reversible to irreversible.
Our framework along with documentation is available on https://github.com/biosustain/multitfa.
Supplementary data are available at Bioinformatics online.
我们通过引入热力学变量的多元处理和利用组分贡献(群组贡献方法的最新实现),在基于热力学的通量分析(TFA)方面取得了重大进展。总的来说,该方法大大降低了热力学变量的不确定性。
我们提出了 multiTFA,这是我们框架的 Python 实现。我们使用核心大肠杆菌模型评估了我们的应用,并在反应吉布斯自由能范围内实现了中位数降低 6.8 kJ/mol,而糖酵解中的 12 个反应中有 3 个从可逆变为不可逆。
我们的框架以及文档可在 https://github.com/biosustain/multitfa 上获得。
补充数据可在 Bioinformatics 在线获得。