Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt 64283, Germany.
Centre for Synthetic Biology, TU Darmstadt, Darmstadt 64283, Germany.
ACS Synth Biol. 2021 Dec 17;10(12):3316-3329. doi: 10.1021/acssynbio.1c00193. Epub 2021 Nov 22.
Genetic design automation methods for combinational circuits often rely on standard algorithms from electronic design automation in their circuit synthesis and technology mapping. However, those algorithms are domain-specific and are hence often not directly suitable for the biological context. In this work we identify aspects of those algorithms that require domain-adaptation. We first demonstrate that enumerating structural variants for a given Boolean specification allows us to find better performing circuits and that stochastic gate assignment methods need to be properly adjusted in order to find the best assignment. Second, we present a general circuit scoring scheme that accounts for the limited accuracy of biological device models including the variability across cells and show that circuits selected according to this score exhibit higher robustness with respect to parametric variations. If gate characteristics in a library are just given in terms of intervals, we provide means to efficiently propagate signals through such a circuit and compute corresponding scores. We demonstrate the novel design approach using the Cello gate library and 33 logic functions that were synthesized and implemented in vivo recently (Nielsen, A., et al., , , (6281), DOI: 10.1126/science.aac7341). Across this set of functions, 32 of them can be improved by simply considering structural variants yielding performance gains of up to 7.9-fold, whereas 22 of them can be improved with gains up to 26-fold when selecting circuits according to the novel robustness score. We furthermore report on the synergistic combination of the two proposed improvements.
组合电路的遗传设计自动化方法通常在其电路综合和技术映射中依赖于电子设计自动化的标准算法。然而,这些算法是特定于领域的,因此通常不直接适用于生物背景。在这项工作中,我们确定了那些需要适应领域的算法的方面。我们首先证明,对于给定的布尔规范,枚举结构变体可以让我们找到性能更好的电路,并且需要正确调整随机门分配方法,以找到最佳分配。其次,我们提出了一种通用的电路评分方案,该方案考虑了生物器件模型的有限精度,包括跨细胞的可变性,并表明根据该评分选择的电路在参数变化方面具有更高的鲁棒性。如果库中的门特性仅以区间的形式给出,我们提供了一种有效的方法来通过这样的电路传播信号并计算相应的分数。我们使用 Cello 门库和最近在体内合成和实现的 33 个逻辑函数(Nielsen, A., et al.,,, (6281), DOI: 10.1126/science.aac7341)来演示新的设计方法。在这组函数中,通过简单地考虑结构变体,可以将其中 32 个函数进行改进,从而获得高达 7.9 倍的性能增益,而对于根据新的鲁棒性得分选择电路,可以将其中 22 个函数的增益提高到 26 倍。此外,我们还报告了这两种改进的协同组合。
ACS Synth Biol. 2021-12-17
ACS Synth Biol. 2023-2-17
ACS Synth Biol. 2017-7-21
ACS Synth Biol. 2019-7-19
PLoS Comput Biol. 2011-2-17
ACS Synth Biol. 2024-10-18
J Biomed Biotechnol. 2011
ACS Synth Biol. 2014-8-15
Nat Protoc. 2022-4
ACS Synth Biol. 2025-5-16
bioRxiv. 2024-9-24
ACS Synth Biol. 2024-10-18
Synth Biol (Oxf). 2023-3-28
ACS Synth Biol. 2023-2-17
ACS Synth Biol. 2020-11-20
ACS Synth Biol. 2020-9-18
Nat Microbiol. 2020-11
ACS Synth Biol. 2019-9-20
Science. 2018-9-21
Crit Rev Biotechnol. 2017-9-27