文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鲁棒基因回路的自动化设计:结构变体与参数不确定性。

Automated Design of Robust Genetic Circuits: Structural Variants and Parameter Uncertainty.

机构信息

Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt 64283, Germany.

Centre for Synthetic Biology, TU Darmstadt, Darmstadt 64283, Germany.

出版信息

ACS Synth Biol. 2021 Dec 17;10(12):3316-3329. doi: 10.1021/acssynbio.1c00193. Epub 2021 Nov 22.


DOI:10.1021/acssynbio.1c00193
PMID:34807573
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8689692/
Abstract

Genetic design automation methods for combinational circuits often rely on standard algorithms from electronic design automation in their circuit synthesis and technology mapping. However, those algorithms are domain-specific and are hence often not directly suitable for the biological context. In this work we identify aspects of those algorithms that require domain-adaptation. We first demonstrate that enumerating structural variants for a given Boolean specification allows us to find better performing circuits and that stochastic gate assignment methods need to be properly adjusted in order to find the best assignment. Second, we present a general circuit scoring scheme that accounts for the limited accuracy of biological device models including the variability across cells and show that circuits selected according to this score exhibit higher robustness with respect to parametric variations. If gate characteristics in a library are just given in terms of intervals, we provide means to efficiently propagate signals through such a circuit and compute corresponding scores. We demonstrate the novel design approach using the Cello gate library and 33 logic functions that were synthesized and implemented in vivo recently (Nielsen, A., et al., , , (6281), DOI: 10.1126/science.aac7341). Across this set of functions, 32 of them can be improved by simply considering structural variants yielding performance gains of up to 7.9-fold, whereas 22 of them can be improved with gains up to 26-fold when selecting circuits according to the novel robustness score. We furthermore report on the synergistic combination of the two proposed improvements.

摘要

组合电路的遗传设计自动化方法通常在其电路综合和技术映射中依赖于电子设计自动化的标准算法。然而,这些算法是特定于领域的,因此通常不直接适用于生物背景。在这项工作中,我们确定了那些需要适应领域的算法的方面。我们首先证明,对于给定的布尔规范,枚举结构变体可以让我们找到性能更好的电路,并且需要正确调整随机门分配方法,以找到最佳分配。其次,我们提出了一种通用的电路评分方案,该方案考虑了生物器件模型的有限精度,包括跨细胞的可变性,并表明根据该评分选择的电路在参数变化方面具有更高的鲁棒性。如果库中的门特性仅以区间的形式给出,我们提供了一种有效的方法来通过这样的电路传播信号并计算相应的分数。我们使用 Cello 门库和最近在体内合成和实现的 33 个逻辑函数(Nielsen, A., et al.,,, (6281), DOI: 10.1126/science.aac7341)来演示新的设计方法。在这组函数中,通过简单地考虑结构变体,可以将其中 32 个函数进行改进,从而获得高达 7.9 倍的性能增益,而对于根据新的鲁棒性得分选择电路,可以将其中 22 个函数的增益提高到 26 倍。此外,我们还报告了这两种改进的协同组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc5/8689692/fcde68be6a55/sb1c00193_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc5/8689692/25ab6f712c38/sb1c00193_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc5/8689692/926f3c5027c5/sb1c00193_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc5/8689692/f46373cc0fe6/sb1c00193_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc5/8689692/b1aba91da864/sb1c00193_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc5/8689692/af11bb2cc22a/sb1c00193_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc5/8689692/e703d5ad50b1/sb1c00193_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc5/8689692/fcde68be6a55/sb1c00193_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc5/8689692/25ab6f712c38/sb1c00193_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc5/8689692/926f3c5027c5/sb1c00193_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc5/8689692/f46373cc0fe6/sb1c00193_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc5/8689692/b1aba91da864/sb1c00193_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc5/8689692/af11bb2cc22a/sb1c00193_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc5/8689692/e703d5ad50b1/sb1c00193_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc5/8689692/fcde68be6a55/sb1c00193_0007.jpg

相似文献

[1]
Automated Design of Robust Genetic Circuits: Structural Variants and Parameter Uncertainty.

ACS Synth Biol. 2021-12-17

[2]
Context-Aware Technology Mapping in Genetic Design Automation.

ACS Synth Biol. 2023-2-17

[3]
Simulation Approach for Timing Analysis of Genetic Logic Circuits.

ACS Synth Biol. 2017-7-21

[4]
An Automated Biomodel Selection System (BMSS) for Gene Circuit Designs.

ACS Synth Biol. 2019-7-19

[5]
Automatic design of digital synthetic gene circuits.

PLoS Comput Biol. 2011-2-17

[6]
Energy Aware Technology Mapping of Genetic Logic Circuits.

ACS Synth Biol. 2024-10-18

[7]
Robust design of biological circuits: evolutionary systems biology approach.

J Biomed Biotechnol. 2011

[8]
Directed acyclic graph-based technology mapping of genetic circuit models.

ACS Synth Biol. 2014-8-15

[9]
Genetic circuit design automation with Cello 2.0.

Nat Protoc. 2022-4

[10]
Automated Design of Synthetic Cell Classifier Circuits Using a Two-Step Optimization Strategy.

Cell Syst. 2017-2-8

引用本文的文献

[1]
Tuning Ultrasensitivity in Genetic Logic Gates Using Antisense RNA Feedback.

ACS Synth Biol. 2025-5-16

[2]
Energy Aware Technology Mapping of Genetic Logic Circuits.

bioRxiv. 2024-9-24

[3]
Energy Aware Technology Mapping of Genetic Logic Circuits.

ACS Synth Biol. 2024-10-18

[4]
Developmental assembly of multi-component polymer systems through interconnected synthetic gene networks in vitro.

Nat Commun. 2024-10-3

[5]
Algorithmic Programming of Sequential Logic and Genetic Circuits for Recording Biochemical Concentration in a Probiotic Bacterium.

ACS Synth Biol. 2023-9-15

[6]
Robustness and reproducibility of simple and complex synthetic logic circuit designs using a DBTL loop.

Synth Biol (Oxf). 2023-3-28

[7]
Context-Aware Technology Mapping in Genetic Design Automation.

ACS Synth Biol. 2023-2-17

本文引用的文献

[1]
Local genetic context shapes the function of a gene regulatory network.

Elife. 2021-3-8

[2]
Multidimensional Characterization of Parts Enhances Modeling Accuracy in Genetic Circuits.

ACS Synth Biol. 2020-11-20

[3]
Genetic Circuit Dynamics: Hazard and Glitch Analysis.

ACS Synth Biol. 2020-9-18

[4]
Genetic circuit design automation for yeast.

Nat Microbiol. 2020-11

[5]
Cell-Free Prototyping of AND-Logic Gates Based on Heterogeneous RNA Activators.

ACS Synth Biol. 2019-9-20

[6]
Context in synthetic biology: Memory effects of environments with mono-molecular reactions.

J Chem Phys. 2019-1-14

[7]
Cellular checkpoint control using programmable sequential logic.

Science. 2018-9-21

[8]
Programming gene and engineered-cell therapies with synthetic biology.

Science. 2018-2-9

[9]
Standardization in synthetic biology: an engineering discipline coming of age.

Crit Rev Biotechnol. 2017-9-27

[10]
An integrative circuit-host modelling framework for predicting synthetic gene network behaviours.

Nat Microbiol. 2017-9-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索