Suppr超能文献

代谢网络向遗传网络的反馈揭示了大肠杆菌和枯草芽孢杆菌中的调控模块。

Feedbacks from the metabolic network to the genetic network reveal regulatory modules in E. coli and B. subtilis.

机构信息

Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India.

National Centre for Biological Sciences, Bangalore, Karnataka 560065, India.

出版信息

PLoS One. 2018 Oct 4;13(10):e0203311. doi: 10.1371/journal.pone.0203311. eCollection 2018.

Abstract

The genetic regulatory network (GRN) plays a key role in controlling the response of the cell to changes in the environment. Although the structure of GRNs has been the subject of many studies, their large scale structure in the light of feedbacks from the metabolic network (MN) has received relatively little attention. Here we study the causal structure of the GRNs, namely the chain of influence of one component on the other, taking into account feedback from the MN. First we consider the GRNs of E. coli and B. subtilis without feedback from MN and illustrate their causal structure. Next we augment the GRNs with feedback from their respective MNs by including (a) links from genes coding for enzymes to metabolites produced or consumed in reactions catalyzed by those enzymes and (b) links from metabolites to genes coding for transcription factors whose transcriptional activity the metabolites alter by binding to them. We find that the inclusion of feedback from MN into GRN significantly affects its causal structure, in particular the number of levels and relative positions of nodes in the hierarchy, and the number and size of the strongly connected components (SCCs). We then study the functional significance of the SCCs. For this we identify condition specific feedbacks from the MN into the GRN by retaining only those enzymes that are essential for growth in specific environmental conditions simulated via the technique of flux balance analysis (FBA). We find that the SCCs of the GRN augmented by these feedbacks can be ascribed specific functional roles in the organism. Our algorithmic approach thus reveals relatively autonomous subsystems with specific functionality, or regulatory modules in the organism. This automated approach could be useful in identifying biologically relevant modules in other organisms for which network data is available, but whose biology is less well studied.

摘要

遗传调控网络 (GRN) 在控制细胞对环境变化的反应方面起着关键作用。尽管 GRN 的结构已经成为许多研究的主题,但它们在代谢网络 (MN) 反馈的背景下的大规模结构却相对较少受到关注。在这里,我们研究了 GRN 的因果结构,即一个组件对另一个组件的影响链,同时考虑了来自 MN 的反馈。首先,我们考虑了没有来自 MN 反馈的 E. coli 和 B. subtilis 的 GRN,并说明了它们的因果结构。接下来,我们通过包括 (a) 编码酶的基因与由这些酶催化的反应中产生或消耗的代谢物之间的链接,以及 (b) 代谢物与转录因子之间的链接,转录因子的转录活性被代谢物结合改变,从而将 GRN 与各自的 MN 中的反馈相增强。我们发现,将 MN 中的反馈纳入 GRN 会显著影响其因果结构,特别是层次结构中节点的层次和相对位置的数量,以及强连通分量 (SCC) 的数量和大小。然后,我们研究了 SCC 的功能意义。为此,我们通过保留在通过通量平衡分析 (FBA) 模拟的特定环境条件下对生长至关重要的那些酶,从 MN 中识别出针对 GRN 的特定条件反馈。我们发现,这些反馈增强的 GRN 的 SCC 可以被赋予生物体中特定的功能角色。因此,我们的算法方法揭示了生物体中具有特定功能的相对自主子系统或调节模块。这种自动化方法可用于识别具有网络数据但生物学研究较少的其他生物体中具有生物学意义的模块。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/555c/6171850/1a5f0600e30d/pone.0203311.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验