Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France.
Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS, Université Paris-Saclay, UMR 9191, F-91190 Gif-sur-Yvette, France.
Genetics. 2021 Mar 3;217(1):1-12. doi: 10.1093/genetics/iyaa010.
Glycolysis and fatty acid (FA) synthesis directs the production of energy-carrying molecules and building blocks necessary to support cell growth, although the absolute requirement of these metabolic pathways must be deeply investigated. Here, we used Drosophila genetics and focus on the TOR (Target of Rapamycin) signaling network that controls cell growth and homeostasis. In mammals, mTOR (mechanistic-TOR) is present in two distinct complexes, mTORC1 and mTORC2; the former directly responds to amino acids and energy levels, whereas the latter sustains insulin-like-peptide (Ilp) response. The TORC1 and Ilp signaling branches can be independently modulated in most Drosophila tissues. We show that TORC1 and Ilp-dependent overgrowth can operate independently in fat cells and that ubiquitous over-activation of TORC1 or Ilp signaling affects basal metabolism, supporting the use of Drosophila as a powerful model to study the link between growth and metabolism. We show that cell-autonomous restriction of glycolysis or FA synthesis in fat cells retrains overgrowth dependent on Ilp signaling but not TORC1 signaling. Additionally, the mutation of FASN (Fatty acid synthase) results in a drop in TORC1 but not Ilp signaling, whereas, at the cell-autonomous level, this mutation affects none of these signals in fat cells. These findings thus reveal differential metabolic sensitivity of TORC1- and Ilp-dependent growth and suggest that cell-autonomous metabolic defects might elicit local compensatory pathways. Conversely, enzyme knockdown in the whole organism results in animal death. Importantly, our study weakens the use of single inhibitors to fight mTOR-related diseases and strengthens the use of drug combination and selective tissue-targeting.
糖酵解和脂肪酸(FA)合成指导能量载体分子和构建块的产生,这些分子和构建块是支持细胞生长所必需的,尽管这些代谢途径的绝对需求必须深入研究。在这里,我们使用了果蝇遗传学,并专注于控制细胞生长和体内平衡的 TOR(雷帕霉素靶蛋白)信号网络。在哺乳动物中,mTOR(机械性 TOR)存在于两个不同的复合物中,mTORC1 和 mTORC2;前者直接响应氨基酸和能量水平,而后者则维持胰岛素样肽(Ilp)反应。在大多数果蝇组织中,TORC1 和 Ilp 信号分支可以独立调节。我们表明,TORC1 和 Ilp 依赖性过度生长可以在脂肪细胞中独立运作,而 TORC1 或 Ilp 信号的普遍过度激活会影响基础代谢,这支持了使用果蝇作为研究生长和代谢之间联系的强大模型。我们表明,在脂肪细胞中细胞自主限制糖酵解或 FA 合成可以重新训练依赖于 Ilp 信号但不依赖于 TORC1 信号的过度生长。此外,FASN(脂肪酸合酶)的突变导致 TORC1 下降,但不影响 Ilp 信号,而在细胞自主水平上,这种突变在脂肪细胞中不影响这些信号中的任何一种。这些发现因此揭示了 TORC1 和 Ilp 依赖性生长的不同代谢敏感性,并表明细胞自主代谢缺陷可能引发局部补偿途径。相反,在整个生物体中敲低酶会导致动物死亡。重要的是,我们的研究削弱了使用单一抑制剂来对抗与 mTOR 相关的疾病的做法,并加强了药物组合和选择性组织靶向的使用。