Suppr超能文献

33 种肿瘤类型染色体改变导致的泛癌症等位基因失衡模式。

Pan cancer patterns of allelic imbalance from chromosomal alterations in 33 tumor types.

机构信息

Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.

出版信息

Genetics. 2021 Mar 3;217(1):1-12. doi: 10.1093/genetics/iyaa021.

Abstract

Somatic copy number alterations (SCNAs) serve as hallmarks of tumorigenesis and often result in deviations from one-to-one allelic ratios at heterozygous loci, leading to allelic imbalance (AI). The Cancer Genome Atlas (TCGA) reports SCNAs identified using a circular binary segmentation algorithm, providing segment mean copy number estimates from single-nucleotide polymorphism DNA microarray total intensities (log R ratio), but not allele-specific intensities ("B allele" frequencies) that inform of AI. Our approach provides more sensitive identification of SCNAs by modeling the "B allele" frequencies jointly, thereby bolstering the catalog of chromosomal alterations in this widely utilized resource. Here we present AI summaries for all 33 tumor sites in TCGA, including those induced by SCNAs and copy-neutral loss-of-heterozygosity (cnLOH). We identified AI in 94% of the tumors, higher than in previous reports. Recurrent events included deletions of 17p, 9q, 3p, amplifications of 8q, 1q, 7p, as well as mixed event types on 8p and 13q. We also observed both site-specific and pan-cancer (spanning 17p) cnLOH, patterns which have not been comprehensively characterized. The identification of such cnLOH events elucidates tumor suppressors and multi-hit pathways to carcinogenesis. We also contrast the landscapes inferred from AI- and total intensity-derived SCNAs and propose an automated procedure to improve and adjust SCNAs in TCGA for cases where high levels of aneuploidy obscured baseline intensity identification. Our findings support the exploration of additional methods for robust automated inference procedures and to aid empirical discoveries across TCGA.

摘要

体细胞拷贝数改变 (SCNAs) 是肿瘤发生的标志,通常导致杂合位点的等位基因比例偏离 1:1,导致等位基因失衡 (AI)。癌症基因组图谱 (TCGA) 使用环形二进制分割算法报告 SCNAs,提供从单核苷酸多态性 DNA 微阵列总强度 (log R 比) 中得出的片段平均拷贝数估计值,但不提供等位基因特异性强度 (“B 等位基因”频率),该频率可提供 AI 的信息。我们的方法通过联合建模“B 等位基因”频率来更敏感地识别 SCNAs,从而增强了这个广泛使用资源中的染色体改变目录。在这里,我们为 TCGA 中的所有 33 个肿瘤部位提供 AI 摘要,包括由 SCNAs 和拷贝数中性杂合性丢失 (cnLOH) 引起的 AI。我们在 94%的肿瘤中发现了 AI,高于以前的报告。反复出现的事件包括 17p、9q、3p 的缺失,8q、1q、7p 的扩增,以及 8p 和 13q 上的混合事件类型。我们还观察到了特定部位和泛癌 (跨越 17p) 的 cnLOH,这些模式以前没有得到全面描述。这些 cnLOH 事件的识别阐明了肿瘤抑制因子和多击途径致癌。我们还对比了从 AI 和总强度衍生的 SCNAs 推断出的图谱,并提出了一种自动程序,以改进和调整 TCGA 中的 SCNAs,用于那些高水平非整倍体使基线强度识别变得模糊的情况。我们的研究结果支持探索其他方法来进行稳健的自动推断程序,并在 TCGA 中协助经验发现。

相似文献

10
Genomic aberrations in carcinomas of the uterine corpus.子宫体癌中的基因组畸变。
Genes Chromosomes Cancer. 2004 Jul;40(3):229-46. doi: 10.1002/gcc.20038.

本文引用的文献

1
Chromosome Abnormalities: New Insights into Their Clinical Significance in Cancer.染色体异常:对其在癌症中临床意义的新见解
Mol Ther Oncolytics. 2020 May 26;17:562-570. doi: 10.1016/j.omto.2020.05.010. eCollection 2020 Jun 26.
4
Biomarkers for Homologous Recombination Deficiency in Cancer.癌症同源重组缺陷的生物标志物。
J Natl Cancer Inst. 2018 Jul 1;110(7):704-713. doi: 10.1093/jnci/djy085.
6
Genomic and Functional Approaches to Understanding Cancer Aneuploidy.基因组和功能方法研究癌症非整倍性。
Cancer Cell. 2018 Apr 9;33(4):676-689.e3. doi: 10.1016/j.ccell.2018.03.007. Epub 2018 Apr 2.
8
Difference Makers: Chromosomal Instability versus Aneuploidy in Cancer.关键因素:癌症中的染色体不稳定与非整倍体
Trends Cancer. 2016 Oct;2(10):561-571. doi: 10.1016/j.trecan.2016.09.003. Epub 2016 Sep 24.
9
Integrated Molecular Characterization of Uterine Carcinosarcoma.子宫癌肉瘤的综合分子特征分析
Cancer Cell. 2017 Mar 13;31(3):411-423. doi: 10.1016/j.ccell.2017.02.010.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验