Suppr超能文献

用于计算机辅助乳房断层合成摄影、数字乳腺断层摄影和数字乳腺 X 线摄影的患者衍生数字乳房体模数据集。

Dataset of patient-derived digital breast phantoms for in silico studies in breast computed tomography, digital breast tomosynthesis, and digital mammography.

机构信息

INFN Sezione di Napoli, Naples, Italy.

Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Naples, Italy.

出版信息

Med Phys. 2021 May;48(5):2682-2693. doi: 10.1002/mp.14826. Epub 2021 Apr 3.

Abstract

PURPOSE

To present a dataset of computational digital breast phantoms derived from high-resolution three-dimensional (3D) clinical breast images for the use in virtual clinical trials in two-dimensional (2D) and 3D x-ray breast imaging.

ACQUISITION AND VALIDATION METHODS

Uncompressed computational breast phantoms for investigations in dedicated breast CT (BCT) were derived from 150 clinical 3D breast images acquired via a BCT scanner at UC Davis (California, USA). Each image voxel was classified in one out of the four main materials presented in the field of view: fibroglandular tissue, adipose tissue, skin tissue, and air. For the image classification, a semi-automatic software was developed. The semi-automatic classification was compared via manual glandular classification performed by two researchers. A total of 60 compressed computational phantoms for virtual clinical trials in digital mammography (DM) and digital breast tomosynthesis (DBT) were obtained from the corresponding uncompressed phantoms via a software algorithm simulating the compression and the elastic deformation of the breast, using the tissue's elastic coefficient. This process was evaluated in terms of glandular fraction modification introduced by the compression procedure. The generated cohort of 150 uncompressed computational breast phantoms presented a mean value of the glandular fraction by mass of 12.3%; the average diameter of the breast evaluated at the center of mass was 105 mm. Despite the slight differences between the two manual segmentations, the resulting glandular tissue segmentation did not consistently differ from that obtained via the semi-automatic classification. The difference between the glandular fraction by mass before and after the compression was 2.1% on average. The 60 compressed phantoms presented an average glandular fraction by mass of 12.1% and an average compressed thickness of 61 mm.

DATA FORMAT AND ACCESS

The generated digital breast phantoms are stored in DICOM files. Image voxels can present one out of four values representing the different classified materials: 0 for the air, 1 for the adipose tissue, 2 for the glandular tissue, and 3 for the skin tissue. The generated computational phantoms datasets were stored in the Zenodo public repository for research purposes (http://doi.org/10.5281/zenodo.4529852, http://doi.org/10.5281/zenodo.4515360).

POTENTIAL APPLICATIONS

The dataset developed within the INFN AGATA project will be used for developing a platform for virtual clinical trials in x-ray breast imaging and dosimetry. In addition, they will represent a valid support for introducing new breast models for dose estimates in 2D and 3D x-ray breast imaging and as models for manufacturing anthropomorphic physical phantoms.

摘要

目的

为二维(2D)和三维 X 射线乳房成像中的虚拟临床试验,提供一组源自高分辨率三维(3D)临床乳房图像的计算性数字乳房体模。

采集和验证方法

通过加利福尼亚大学戴维斯分校(美国)的 BCT 扫描仪获取 150 例临床 3D 乳房图像,以此为基础衍生出适用于专用乳房 CT(BCT)研究的未压缩计算性乳房体模。视野中每个图像体素被分为四类主要材料之一:纤维腺体组织、脂肪组织、皮肤组织和空气。为了进行图像分类,开发了一个半自动软件。通过两位研究人员手动进行腺体分类,对半自动分类进行了比较。通过软件算法,从相应的未压缩体模中获得了用于数字乳腺摄影(DM)和数字乳腺断层合成(DBT)虚拟临床试验的总共 60 个压缩计算性体模,该算法模拟了乳房的压缩和弹性变形,使用了组织的弹性系数。从压缩过程中引入的腺体分数改变方面对该过程进行了评估。生成的 150 个未压缩计算性乳房体模的队列中,腺体质量分数的平均值为 12.3%;质心处乳房的平均直径为 105mm。尽管手动分割存在细微差异,但所得腺体组织分割并未始终不同于半自动分类。平均而言,压缩前后腺体分数的差异为 2.1%。60 个压缩体模的平均腺体分数为 12.1%,平均压缩厚度为 61mm。

数据格式和访问方式

生成的数字乳房体模以 DICOM 文件存储。图像体素可以表示为四种不同分类材料之一的值:0 代表空气,1 代表脂肪组织,2 代表腺体组织,3 代表皮肤组织。为研究目的,将生成的计算性体模数据集存储在 Zenodo 公共存储库中(http://doi.org/10.5281/zenodo.4529852,http://doi.org/10.5281/zenodo.4515360)。

潜在应用

INFN AGATA 项目内开发的数据集将用于开发用于二维和三维 X 射线乳房成像中的虚拟临床试验和剂量学的平台。此外,它们还将为引入新的用于二维和三维 X 射线乳房成像剂量估计的乳房模型以及制造人体物理体模的模型提供有效支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验