Houbrechts Katrien, Cockmartin Lesley, Marshall Nicholas, Vancoillie Liesbeth, Marinov Stoyko, Sanchez de la Rosa Ruben, Klausz Remy, Carton Ann-Katherine, Bosmans Hilde
Medical Physics and Quality Assessment, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
Department of Radiology, UZ Leuven, Leuven, Belgium.
Med Phys. 2025 Jun;52(6):3800-3814. doi: 10.1002/mp.17873. Epub 2025 May 8.
Clinical studies to evaluate the performance of new imaging devices require the collection of patient data. Virtual methods present a potential alternative in which patient-simulating phantoms are used instead.
This work uses a virtual imaging technique to examine the extent to which human observer microcalcification detection performance in phantom backgrounds matches that in real patient backgrounds for digital breast tomosynthesis (DBT).
This work used the following DBT image datasets: (1) 142 real patient images and (2) 20 real images of the physical L1 phantom, both acquired on a GEHC Senographe Pristina system; (3) 217 simulated images of the Stochastic Solid Breast Texture (SSBT) phantom and (4) 217 simulated images of the digital L1 phantom, both created with the CatSim framework. The L1 phantom is a PMMA container filled with water and PMMA spheres of varying diameters. The SSBT phantom is a computational phantom composed of glandular and adipose tissue compartments. Signal-present images were generated by inserting simulated microcalcification clusters, containing individual calcifications with thicknesses and projected areas in the range of 165-180 µm, 195-210 µm and 225-240 µm, and 0.025-0.031 mm, 0.032-0.040 mm, 0.041-0.045 mm respectively, at random locations into all four background types. Three human observers performed a search/localization task on 120 signal-present and 97 signal-absent volumes of interest (VOIs) per background type. A jackknife alternative free-response receiver operating characteristic (JAFROC) analysis was applied to calculate the area under the curve (AUC). The simulation procedure was first validated by testing the physical and digital L1 background AUC values for equivalence (margin = 0.1). The AUC for patient backgrounds and each phantom type (SSBT, physical L1, digital L1) was then compared. Additionally, each patient's VOI was categorized in homogeneous or heterogeneous background texture distribution by an experienced physicist, and by local volumetric breast density (VBD) at the insertion position to examine their effect on correctly detected fraction of microcalcification clusters.
Mean AUC for the patient images was 0.70 ± 0.04, while mean AUCs of 0.74 ± 0.04, 0.76 ± 0.03, and 0.76 ± 0.07 were found for the SSBT, physical L1 and digital L1 phantoms, respectively. The AUC for the physical and digital L1 phantoms was equivalent (p = 0.03), as well as for the patients and SSBT backgrounds (p = 0.002). The physical and digital L1 images did not have equivalent detection performance compared to patient images (p = 0.06 and p = 0.9, respectively). In patient backgrounds, the correctly detected fraction of microcalcifications clusters fell from 0.53 for the lowest density (VBD < 4.5%) to 0.40 for the highest density (VBD ≥ 15.5%). Microcalcification detection fractions were 0.52, 0.55, and 0.55 for the SSBT, physical L1 and digital L1 backgrounds, respectively.
Detection levels were equivalent between the physical and digital versions of the L1 phantom. Detection in L1 and patient backgrounds was not equivalent, however, differences in detection performance were small, confirming the potential value of this phantom. The digital SSBT phantom was found to be equivalent to patient backgrounds for DBT studies of microcalcification cluster detection performance, for the DBT system and reconstruction algorithm used in this study.
评估新型成像设备性能的临床研究需要收集患者数据。虚拟方法提供了一种潜在的替代方案,即使用模拟患者的体模。
本研究采用虚拟成像技术,探讨在数字乳腺断层合成(DBT)中,人体观察者在体模背景下检测微钙化的性能与在真实患者背景下的匹配程度。
本研究使用了以下DBT图像数据集:(1)142张真实患者图像;(2)在GEHC Senographe Pristina系统上采集的20张物理L1体模的真实图像;(3)使用CatSim框架创建的217张随机固体乳腺纹理(SSBT)体模的模拟图像;(4)217张数字L1体模的模拟图像。L1体模是一个装满水和不同直径PMMA球体的PMMA容器。SSBT体模是一个由腺体和脂肪组织区域组成的计算体模。通过在所有四种背景类型的随机位置插入模拟微钙化簇来生成有信号图像,这些微钙化簇包含厚度和投影面积分别在165 - 180μm、195 - 210μm和225 - 240μm,以及0.025 - 0.031mm、0.032 - 0.040mm、0.041 - 0.045mm范围内的单个钙化。三名人体观察者对每种背景类型的120个有信号和97个无信号感兴趣体积(VOI)执行搜索/定位任务。应用留一法交替自由响应接收器操作特征(JAFROC)分析来计算曲线下面积(AUC)。首先通过测试物理和数字L1背景的AUC值是否等效(差值 = 0.1)来验证模拟过程。然后比较患者背景和每种体模类型(SSBT、物理L1、数字L1)的AUC。此外,由一位经验丰富的物理学家根据均匀或异质背景纹理分布以及插入位置的局部体积乳腺密度(VBD)对每个患者的VOI进行分类,以检查它们对微钙化簇正确检测率的影响。
患者图像的平均AUC为0.70±0.04,而SSBT、物理L1和数字L1体模的平均AUC分别为0.74±0.04、0.76±0.03和0.76±0.07。物理和数字L1体模的AUC等效(p = 0.03),患者和SSBT背景的AUC也等效(p = 0.002)。与患者图像相比,物理和数字L1图像的检测性能不等效(分别为p = 0.06和p = 0.9)。在患者背景中,微钙化簇的正确检测率从最低密度(VBD < 4.5%)时的0.53降至最高密度(VBD≥15.5%)时的0.40。SSBT、物理L1和数字L1背景的微钙化检测率分别为0.52、0.55和0.55。
L1体模的物理和数字版本之间的检测水平等效。然而,L1和患者背景中的检测并不等效,但检测性能差异较小,证实了这种体模的潜在价值。对于本研究中使用的DBT系统和重建算法,发现数字SSBT体模在微钙化簇检测性能的DBT研究中与患者背景等效。