Suppr超能文献

多光子显微镜在神经退行性疾病中线粒体钙的活体脑成像。

In vivo brain imaging of mitochondrial Ca in neurodegenerative diseases with multiphoton microscopy.

机构信息

Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA.

Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA.

出版信息

Biochim Biophys Acta Mol Cell Res. 2021 May;1868(6):118998. doi: 10.1016/j.bbamcr.2021.118998. Epub 2021 Mar 5.

Abstract

Mitochondria are involved in a large number of essential roles related to neuronal function. Ca handling by mitochondria is critical for many of these functions, including energy production and cellular fate. Conversely, mitochondrial Ca mishandling has been related to a variety of neurodegenerative diseases. Investigating mitochondrial Ca dynamics is essential for advancing our understanding of the role of intracellular mitochondrial Ca signals in physiology and pathology. Improved Ca indicators, and the ability to target them to different cells and compartments, have emerged as useful tools for analysis of Ca signals in living organisms. Combined with state-of-the-art techniques such as multiphoton microscopy, they allow for the study of mitochondrial Ca dynamics in vivo in mouse models of the disease. Here, we provide an overview of the Ca transporters/ion channels in mitochondrial membranes, and the involvement of mitochondrial Ca in neurodegenerative diseases followed by a summary of the main tools available to evaluate mitochondrial Ca dynamics in vivo using the aforementioned technique.

摘要

线粒体参与了许多与神经元功能相关的重要角色。线粒体的 Ca 处理对于许多这些功能至关重要,包括能量产生和细胞命运。相反,线粒体 Ca 处理不当与多种神经退行性疾病有关。研究线粒体 Ca 动力学对于深入了解细胞内线粒体 Ca 信号在生理和病理中的作用至关重要。改进的 Ca 指示剂以及将其靶向不同细胞和隔室的能力已成为分析活生物体中 Ca 信号的有用工具。结合最先进的技术,如多光子显微镜,它们可以在疾病的小鼠模型中研究体内线粒体 Ca 动力学。在这里,我们提供了线粒体膜中的 Ca 转运体/离子通道概述,以及线粒体 Ca 在神经退行性疾病中的作用,然后总结了使用上述技术在体内评估线粒体 Ca 动力学的主要工具。

相似文献

1
In vivo brain imaging of mitochondrial Ca in neurodegenerative diseases with multiphoton microscopy.
Biochim Biophys Acta Mol Cell Res. 2021 May;1868(6):118998. doi: 10.1016/j.bbamcr.2021.118998. Epub 2021 Mar 5.
5
Overexpression of Mitochondrial Calcium Uniporter Causes Neuronal Death.
Oxid Med Cell Longev. 2019 Oct 16;2019:1681254. doi: 10.1155/2019/1681254. eCollection 2019.
6
Mitochondrial Ca(2+) and neurodegeneration.
Cell Calcium. 2012 Jul;52(1):73-85. doi: 10.1016/j.ceca.2012.04.015. Epub 2012 May 18.
7
Red fluorescent CEPIA indicators for visualization of Ca dynamics in mitochondria.
Sci Rep. 2020 Feb 18;10(1):2835. doi: 10.1038/s41598-020-59707-8.
8
Neuronal calcium signaling: function and dysfunction.
Cell Mol Life Sci. 2014 Aug;71(15):2787-814. doi: 10.1007/s00018-013-1550-7. Epub 2014 Jan 19.
9
Mitochondrial Ca(2+) in neurodegenerative disorders.
Pharmacol Res. 2015 Sep;99:377-81. doi: 10.1016/j.phrs.2015.05.007. Epub 2015 May 23.
10
Ca(2+) signalling in mitochondria: mechanism and role in physiology and pathology.
Cell Calcium. 2003 Oct-Nov;34(4-5):399-405. doi: 10.1016/s0143-4160(03)00145-3.

引用本文的文献

1
Genetically encoded biosensors of metabolic function for the study of neurodegeneration, a review and perspective.
Neurophotonics. 2025 Jun;12(Suppl 2):S22805. doi: 10.1117/1.NPh.12.S2.S22805. Epub 2025 Sep 4.
2
Ultrafast optical imaging techniques for exploring rapid neuronal dynamics.
Neurophotonics. 2025 Jan;12(Suppl 1):S14608. doi: 10.1117/1.NPh.12.S1.S14608. Epub 2025 Feb 27.
3
The Matrix of Mitochondrial Imaging: Exploring Spatial Dimensions.
Biomolecules. 2025 Feb 5;15(2):229. doi: 10.3390/biom15020229.
4
Updated Toolbox for Assessing Neuronal Network Reconstruction after Cell Therapy.
Bioengineering (Basel). 2024 May 14;11(5):487. doi: 10.3390/bioengineering11050487.
5
The Role of Oxygen Homeostasis and the HIF-1 Factor in the Development of Neurodegeneration.
Int J Mol Sci. 2024 Apr 23;25(9):4581. doi: 10.3390/ijms25094581.
6
Calcium imaging: A versatile tool to examine Huntington's disease mechanisms and progression.
Front Neurosci. 2022 Nov 3;16:1040113. doi: 10.3389/fnins.2022.1040113. eCollection 2022.

本文引用的文献

1
Mitochondria and Calcium in Alzheimer's Disease: From Cell Signaling to Neuronal Cell Death.
Trends Neurosci. 2021 Feb;44(2):136-151. doi: 10.1016/j.tins.2020.10.004. Epub 2020 Nov 4.
2
High mitochondrial calcium levels precede neuronal death in Alzheimer's disease.
Cell Stress. 2020 Jun 18;4(7):187-190. doi: 10.15698/cst2020.07.226.
3
Structure and mechanism of the mitochondrial Ca uniporter holocomplex.
Nature. 2020 Jun;582(7810):129-133. doi: 10.1038/s41586-020-2309-6. Epub 2020 May 20.
6
Red fluorescent CEPIA indicators for visualization of Ca dynamics in mitochondria.
Sci Rep. 2020 Feb 18;10(1):2835. doi: 10.1038/s41598-020-59707-8.
7
LRRK2 in Parkinson disease: challenges of clinical trials.
Nat Rev Neurol. 2020 Feb;16(2):97-107. doi: 10.1038/s41582-019-0301-2. Epub 2020 Jan 24.
8
Tau inhibits mitochondrial calcium efflux and makes neurons vulnerable to calcium-induced cell death.
Cell Calcium. 2020 Mar;86:102150. doi: 10.1016/j.ceca.2019.102150. Epub 2019 Dec 24.
9
ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now?
Front Neurosci. 2019 Dec 6;13:1310. doi: 10.3389/fnins.2019.01310. eCollection 2019.
10
Circuit Mechanisms of Neurodegenerative Diseases: A New Frontier With Miniature Fluorescence Microscopy.
Front Neurosci. 2019 Oct 31;13:1174. doi: 10.3389/fnins.2019.01174. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验