Suppr超能文献

粪便真菌组合宿主免疫因子可区分艰难梭菌感染与无症状定植。

Fecal Mycobiota Combined With Host Immune Factors Distinguish Clostridioides difficile Infection From Asymptomatic Carriage.

机构信息

College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, China; Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.

Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.

出版信息

Gastroenterology. 2021 Jun;160(7):2328-2339.e6. doi: 10.1053/j.gastro.2021.02.069. Epub 2021 Mar 5.

Abstract

BACKGROUND & AIMS: Although the role of gut microbiota in Clostridioides difficile infection (CDI) has been well established, little is known about the role of mycobiota in CDI. Here, we performed mycobiome data analysis in a well-characterized human cohort to evaluate the potential of using gut mycobiota features for CDI diagnosis.

METHODS

Stool samples were collected from 118 hospital patients, divided into 3 groups: CDI (n = 58), asymptomatic carriers (Carrier, n = 28), and Control (n = 32). The nuclear ribosomal DNA internal transcribed spacer 2 was sequenced using the Illumina HiSeq platform to assess the fungal composition. Downstream statistical analyses (including Alpha diversity analysis, ordination analysis, differential abundance analysis, fungal correlation network analysis, and classification analysis) were then performed.

RESULTS

Significant differences were observed in alpha and beta diversity between patients with CDI and Carrier (P < .05). Differential abundance analysis identified 2 genera (Cladosporium and Aspergillus) enriched in Carrier. The ratio of Ascomycota to Basidiomycota was dramatically higher in patients with CDI than in Carrier and Control (P < .05). Correlations between host immune factors and mycobiota features were weaker in patients with CDI than in Carrier. Using 4 fungal operational taxonomic units combined with 6 host immune markers in the random forest classifier can achieve very high performance (area under the curve ∼92.38%) in distinguishing patients with CDI from Carrier.

CONCLUSIONS

Our study provides specific markers of stool fungi combined with host immune factors to distinguish patients with CDI from Carrier. It highlights the importance of gut mycobiome in CDI, which may have been underestimated. Further studies on the diagnostic applications and therapeutic potentials of these findings are warranted.

摘要

背景与目的

虽然肠道微生物群在艰难梭菌感染(CDI)中的作用已得到充分证实,但关于真菌群落(mycobiota)在 CDI 中的作用知之甚少。在此,我们对一个特征明确的人类队列进行了肠道真菌组数据分析,以评估使用肠道真菌群特征进行 CDI 诊断的潜力。

方法

收集了 118 名住院患者的粪便样本,分为 3 组:CDI(n=58)、无症状携带者(Carrier,n=28)和对照(n=32)。使用 Illumina HiSeq 平台对核核糖体 DNA 内部转录间隔区 2 进行测序,以评估真菌组成。然后进行下游统计分析(包括 Alpha 多样性分析、排序分析、差异丰度分析、真菌相关网络分析和分类分析)。

结果

CDI 患者和 Carrier 之间的 Alpha 和 Beta 多样性存在显著差异(P<0.05)。差异丰度分析发现,Carrier 中富集了 2 个属(Cladosporium 和 Aspergillus)。与 Carrier 和对照相比,CDI 患者的子囊菌门与担子菌门的比值明显更高(P<0.05)。与 Carrier 相比,CDI 患者的宿主免疫因子与真菌群特征之间的相关性较弱。使用 4 个真菌操作分类单元结合随机森林分类器中的 6 个宿主免疫标志物,可以非常高的性能(曲线下面积约为 92.38%)区分 CDI 患者和 Carrier。

结论

本研究提供了粪便真菌与宿主免疫因子相结合的特定标志物,用于区分 CDI 患者和 Carrier。它强调了肠道真菌组在 CDI 中的重要性,这可能被低估了。需要进一步研究这些发现的诊断应用和治疗潜力。

相似文献

1
Fecal Mycobiota Combined With Host Immune Factors Distinguish Clostridioides difficile Infection From Asymptomatic Carriage.
Gastroenterology. 2021 Jun;160(7):2328-2339.e6. doi: 10.1053/j.gastro.2021.02.069. Epub 2021 Mar 5.
2
Analysis of Intestinal Mycobiota of Patients with Clostridioides difficile Infection among a Prospective Inpatient Cohort.
Microbiol Spectr. 2022 Aug 31;10(4):e0136222. doi: 10.1128/spectrum.01362-22. Epub 2022 Jul 14.
3
Integrating gut microbiome and host immune markers to understand the pathogenesis of infection.
Gut Microbes. 2021 Jan-Dec;13(1):1-18. doi: 10.1080/19490976.2021.1935186.
4
Gut microbiome and mycobiome in inflammatory bowel disease patients with infection.
Front Cell Infect Microbiol. 2023 Feb 6;13:1129043. doi: 10.3389/fcimb.2023.1129043. eCollection 2023.
5
Insight into alteration of gut microbiota in Clostridium difficile infection and asymptomatic C. difficile colonization.
Anaerobe. 2015 Aug;34:1-7. doi: 10.1016/j.anaerobe.2015.03.008. Epub 2015 Mar 26.
6
Characterization of the gut microbiome of patients with infection, patients with non- diarrhea, and -colonized patients.
Front Cell Infect Microbiol. 2023 Apr 12;13:1130701. doi: 10.3389/fcimb.2023.1130701. eCollection 2023.
8
Environmental shedding of toxigenic Clostridioides difficile by asymptomatic carriers: A prospective observational study.
Clin Microbiol Infect. 2020 Aug;26(8):1052-1057. doi: 10.1016/j.cmi.2019.12.011. Epub 2020 Jan 3.
10
Fungal and bacterial gut microbiota differ between colonization and infection.
Microbiome Res Rep. 2023 Dec 6;3(1):8. doi: 10.20517/mrr.2023.52. eCollection 2024.

引用本文的文献

1
Exploring the influence of urbanization on gut mycobiota through dietary habits in Burkina Faso.
BMC Microbiol. 2025 Aug 16;25(1):517. doi: 10.1186/s12866-025-04278-9.
2
Gut microbiota and tuberculosis infection: interaction and therapeutic potential.
Gut Microbes. 2025 Dec;17(1):2531201. doi: 10.1080/19490976.2025.2531201. Epub 2025 Jul 14.
4
Profile of intestinal fungal microbiota in acute pancreatitis patients and healthy individuals.
Gut Pathog. 2025 Jan 8;17(1):1. doi: 10.1186/s13099-024-00675-z.
6
Fungal and bacterial gut microbiota differ between colonization and infection.
Microbiome Res Rep. 2023 Dec 6;3(1):8. doi: 10.20517/mrr.2023.52. eCollection 2024.
7
Therapeutic Approach Targeting Gut Microbiome in Gastrointestinal Infectious Diseases.
Int J Mol Sci. 2023 Oct 27;24(21):15654. doi: 10.3390/ijms242115654.
8
Pre-colonization with the fungus exacerbates infection by the bacterial pathogen in a murine model.
mSphere. 2023 Aug 24;8(4):e0012223. doi: 10.1128/msphere.00122-23. Epub 2023 Jun 26.
9
Landscape in the gallbladder mycobiome and bacteriome of patients undergoing cholelithiasis with chronic cholecystitis.
Front Microbiol. 2023 Mar 22;14:1131694. doi: 10.3389/fmicb.2023.1131694. eCollection 2023.

本文引用的文献

3
Diversity of CNCM I-745 mechanisms of action against intestinal infections.
World J Gastroenterol. 2019 May 14;25(18):2188-2203. doi: 10.3748/wjg.v25.i18.2188.
4
Colitis-Induced Th17 Cells Increase the Risk for Severe Subsequent Clostridium difficile Infection.
Cell Host Microbe. 2019 May 8;25(5):756-765.e5. doi: 10.1016/j.chom.2019.03.003. Epub 2019 Apr 16.
5
Oral Candida administration in a Clostridium difficile mouse model worsens disease severity but is attenuated by Bifidobacterium.
PLoS One. 2019 Jan 15;14(1):e0210798. doi: 10.1371/journal.pone.0210798. eCollection 2019.
6
Clostridium difficile toxins induce VEGF-A and vascular permeability to promote disease pathogenesis.
Nat Microbiol. 2019 Feb;4(2):269-279. doi: 10.1038/s41564-018-0300-x. Epub 2018 Dec 3.
9
Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection.
Gut Microbes. 2018 Nov 2;9(6):497-509. doi: 10.1080/19490976.2018.1465158. Epub 2018 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验