Suppr超能文献

基于 ICA 的降噪策略在多回波 BOLD fMRI 屏气诱导脑血管反应性映射中的应用。

ICA-based denoising strategies in breath-hold induced cerebrovascular reactivity mapping with multi echo BOLD fMRI.

机构信息

Basque Center on Cognition, Brain and Language, Donostia, Spain; University of the Basque Country UPV/EHU, Donostia, Spain.

Basque Center on Cognition, Brain and Language, Donostia, Spain.

出版信息

Neuroimage. 2021 Jun;233:117914. doi: 10.1016/j.neuroimage.2021.117914. Epub 2021 Mar 6.

Abstract

Performing a BOLD functional MRI (fMRI) acquisition during breath-hold (BH) tasks is a non-invasive, robust method to estimate cerebrovascular reactivity (CVR). However, movement and breathing-related artefacts caused by the BH can substantially hinder CVR estimates due to their high temporal collinearity with the effect of interest, and attention has to be paid when choosing which analysis model should be applied to the data. In this study, we evaluate the performance of multiple analysis strategies based on lagged general linear models applied on multi-echo BOLD fMRI data, acquired in ten subjects performing a BH task during ten sessions, to obtain subject-specific CVR and haemodynamic lag estimates. The evaluated approaches range from conventional regression models, i.e. including drifts and motion timecourses as nuisance regressors, applied on single-echo or optimally-combined data, to more complex models including regressors obtained from multi-echo independent component analysis with different grades of orthogonalization in order to preserve the effect of interest, i.e. the CVR. We compare these models in terms of their ability to make signal intensity changes independent from motion, as well as the reliability as measured by voxelwise intraclass correlation coefficients of both CVR and lag maps over time. Our results reveal that a conservative independent component analysis model applied on the optimally-combined multi-echo fMRI signal offers the largest reduction of motion-related effects in the signal, while yielding reliable CVR amplitude and lag estimates, although a conventional regression model applied on the optimally-combined data results in similar estimates. This work demonstrates the usefulness of multi-echo based fMRI acquisitions and independent component analysis denoising for precision mapping of CVR in single subjects based on BH paradigms, fostering its potential as a clinically-viable neuroimaging tool for individual patients. It also proves that the way in which data-driven regressors should be incorporated in the analysis model is not straight-forward due to their complex interaction with the BH-induced BOLD response.

摘要

在屏气(BH)任务期间进行血氧水平依赖功能磁共振成像(BOLD fMRI)采集是一种非侵入性、稳健的方法,可用于估计脑血管反应性(CVR)。然而,由于 BH 引起的运动和呼吸相关伪影与感兴趣的效应具有高度的时间相关性,因此在选择应将哪种分析模型应用于数据时需要注意。在这项研究中,我们评估了基于滞后广义线性模型的多种分析策略在多回波 BOLD fMRI 数据上的性能,这些数据是在 10 名受试者在 10 次会话中执行 BH 任务时采集的,以获得个体特异性 CVR 和血液动力学滞后估计值。评估的方法范围从传统的回归模型,即包括漂移和运动时间序列作为混杂回归量,应用于单回波或最佳组合数据,到更复杂的模型,包括从多回波独立成分分析中获得的回归量,这些模型的正交化程度不同,以便保留感兴趣的效应,即 CVR。我们根据它们使信号强度变化与运动无关的能力以及通过随时间变化的体素内类内相关系数来评估 CVR 和滞后图的可靠性来比较这些模型。我们的结果表明,应用于最佳组合多回波 fMRI 信号的保守独立成分分析模型可最大程度地减少信号中的运动相关效应,同时产生可靠的 CVR 幅度和滞后估计值,尽管应用于最佳组合数据的传统回归模型也会产生类似的估计值。这项工作证明了多回波 fMRI 采集和独立成分分析去噪对于基于 BH 范式在单个受试者中精确映射 CVR 的有用性,为其作为针对个体患者的临床可行的神经影像学工具的潜力提供了支持。它还证明了由于数据驱动回归量与 BH 诱导的 BOLD 反应的复杂相互作用,因此将其纳入分析模型的方式并非直截了当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9aa/8351526/ce4fff83c3b8/nihms-1728155-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验