Suppr超能文献

使用间歇呼吸调制进行脑血管反应性映射。

Cerebrovascular reactivity mapping using intermittent breath modulation.

机构信息

Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Neuroimage. 2020 Jul 15;215:116787. doi: 10.1016/j.neuroimage.2020.116787. Epub 2020 Apr 8.

Abstract

Cerebrovascular reactivity (CVR), an index of brain vessel's dilatory capacity, is typically measured using hypercapnic gas inhalation or breath-holding as a vasoactive challenge. However, these methods require considerable subject cooperation and could be challenging in clinical studies. More recently, there have been attempts to use resting-state BOLD data to map CVR by utilizing spontaneous changes in breathing pattern. However, in subjects who have small fluctuations in their spontaneous breathing pattern, the CVR results could be noisy and unreliable. In this study, we aim to develop a new method for CVR mapping that does not require gas-inhalation yet provides substantially higher sensitivity than resting-state CVR mapping. This new method is largely based on resting-state scan, but introduces intermittent modulation of breathing pattern in the subject to enhance fluctuations in their end-tidal CO2 (EtCO2) level. Here we examined the comfort level, sensitivity, and accuracy of this method in two studies. First, in 8 healthy young subjects, we developed the intermittent breath-modulation method using two different modulation frequencies, 6 ​s per breath and 12 ​s per breath, respectively, and compared the results to three existing CVR methods, specifically hypercapnic gas inhalation, breath-holding, and resting-state. Our results showed that the comfort level of the 6-s breath-modulation method was significantly higher than breath-holding (p ​= ​0.007) and CO2-inhalation (p ​= ​0.015) methods, while not different from the resting-state, i.e. free breathing method (p ​= ​0.52). When comparing the sensitivity of CVR methods, the breath-modulation methods revealed higher Z-statistics compared to the resting-state scan (p ​< ​0.008) and was comparable to breath-holding results. Next, we tested the feasibility of breath-modulation CVR mapping (6 ​s per breath) in 21 cognitively normal elderly participants and compared quantitative CVR values to that obtained with the CO2-inhalation method. Whole-brain CVR was found to be 0.150 ​± ​0.055 and 0.154 ​± ​0.032 %ΔBOLD/mmHg for the breath-modulation and CO2-inhalation method, respectively, with a significant correlation between them (y ​= ​0.97x, p ​= ​0.007). CVR mapping with intermittent breath modulation may be a useful method that combines the advantages of resting-state and CO2-inhalation based approaches.

摘要

脑血管反应性(CVR)是衡量血管扩张能力的指标,通常使用高碳酸血症气体吸入或屏气作为血管活性挑战来测量。然而,这些方法需要受试者的充分配合,并且在临床研究中可能具有挑战性。最近,有人试图利用自发呼吸模式的变化,使用静息态 BOLD 数据来映射 CVR。然而,在自发呼吸模式波动较小的受试者中,CVR 结果可能会嘈杂且不可靠。在这项研究中,我们旨在开发一种新的 CVR 映射方法,该方法不需要气体吸入,但比静息态 CVR 映射提供更高的灵敏度。这种新方法主要基于静息态扫描,但在受试者中引入间歇性呼吸模式调制,以增强其呼气末二氧化碳(EtCO2)水平的波动。在这里,我们在两项研究中检查了该方法的舒适度、灵敏度和准确性。首先,在 8 名健康年轻受试者中,我们使用两种不同的调制频率(分别为每呼吸 6 秒和每呼吸 12 秒)开发了间歇性呼吸调制方法,并将结果与三种现有的 CVR 方法(高碳酸血症气体吸入、屏气和静息态)进行了比较。我们的结果表明,6 秒呼吸调制方法的舒适度明显高于屏气(p = 0.007)和 CO2 吸入(p = 0.015)方法,而与静息态(即自由呼吸)方法没有差异(p = 0.52)。当比较 CVR 方法的灵敏度时,呼吸调制方法与静息态扫描相比显示出更高的 Z 统计量(p < 0.008),并且与屏气结果相当。接下来,我们测试了在 21 名认知正常的老年人中进行呼吸调制 CVR 映射(每呼吸 6 秒)的可行性,并将定量 CVR 值与 CO2 吸入方法进行了比较。发现呼吸调制和 CO2 吸入方法的全脑 CVR 分别为 0.150 ± 0.055 和 0.154 ± 0.032 %ΔBOLD/mmHg,两者之间存在显著相关性(y = 0.97x,p = 0.007)。间歇性呼吸调制的 CVR 映射可能是一种有用的方法,它结合了静息态和基于 CO2 吸入方法的优点。

相似文献

1
Cerebrovascular reactivity mapping using intermittent breath modulation.
Neuroimage. 2020 Jul 15;215:116787. doi: 10.1016/j.neuroimage.2020.116787. Epub 2020 Apr 8.
2
Cerebrovascular reactivity mapping without gas challenges.
Neuroimage. 2017 Feb 1;146:320-326. doi: 10.1016/j.neuroimage.2016.11.054. Epub 2016 Nov 23.
3
A practical modification to a resting state fMRI protocol for improved characterization of cerebrovascular function.
Neuroimage. 2021 Oct 1;239:118306. doi: 10.1016/j.neuroimage.2021.118306. Epub 2021 Jun 24.
5
The association between BOLD-based cerebrovascular reactivity (CVR) and end-tidal CO in healthy subjects.
Neuroimage. 2020 Feb 15;207:116365. doi: 10.1016/j.neuroimage.2019.116365. Epub 2019 Nov 14.
6
Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults.
Neuroimage. 2016 Sep;138:147-163. doi: 10.1016/j.neuroimage.2016.05.025. Epub 2016 May 11.
7
Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance.
Neuroimage. 2013 Dec;83:559-68. doi: 10.1016/j.neuroimage.2013.07.007. Epub 2013 Jul 9.
9
Multi-vendor and multisite evaluation of cerebrovascular reactivity mapping using hypercapnia challenge.
Neuroimage. 2021 Dec 15;245:118754. doi: 10.1016/j.neuroimage.2021.118754. Epub 2021 Nov 23.
10
Comparison of cerebral vascular reactivity measures obtained using breath-holding and CO2 inhalation.
J Cereb Blood Flow Metab. 2013 Jul;33(7):1066-74. doi: 10.1038/jcbfm.2013.48. Epub 2013 Apr 10.

引用本文的文献

1
Cerebrovascular Reactivity at Rest and Its Association With Cognitive Function in People With Genetic Frontotemporal Dementia.
Neurology. 2025 Sep 23;105(6):e213677. doi: 10.1212/WNL.0000000000213677. Epub 2025 Sep 4.
2
Functional MRI signatures of autonomic physiology in aging.
Commun Biol. 2025 Aug 27;8(1):1287. doi: 10.1038/s42003-025-08703-7.
4
Problems and solutions in quantifying cerebrovascular reactivity using BOLD-MRI.
Imaging Neurosci (Camb). 2025 May 2;3. doi: 10.1162/imag_a_00556. eCollection 2025.
6
The history and future of resting-state functional magnetic resonance imaging.
Nature. 2025 May;641(8065):1121-1131. doi: 10.1038/s41586-025-08953-9. Epub 2025 May 28.
7
Repeatability and reliability of cerebrovascular reactivity in young adults using multi-echo, multi-contrast MRI.
J Cereb Blood Flow Metab. 2025 May 25:271678X251345292. doi: 10.1177/0271678X251345292.
8
Macrovascular blood flow and microvascular cerebrovascular reactivity are regionally coupled in adolescence.
J Cereb Blood Flow Metab. 2025 Apr;45(4):746-764. doi: 10.1177/0271678X241298588. Epub 2024 Nov 13.
10
Characterising cerebrovascular reactivity and the pupillary light response-a comparative study.
Front Physiol. 2024 Aug 8;15:1384113. doi: 10.3389/fphys.2024.1384113. eCollection 2024.

本文引用的文献

1
Evaluation of cerebrovascular reserve in patients with cerebrovascular diseases using resting-state MRI: A feasibility study.
Magn Reson Imaging. 2019 Jun;59:46-52. doi: 10.1016/j.mri.2019.03.003. Epub 2019 Mar 5.
2
Cerebrovascular reactivity (CVR) MRI with CO2 challenge: A technical review.
Neuroimage. 2019 Feb 15;187:104-115. doi: 10.1016/j.neuroimage.2018.03.047. Epub 2018 Mar 21.
3
Cerebrovascular reactivity mapping without gas challenges.
Neuroimage. 2017 Feb 1;146:320-326. doi: 10.1016/j.neuroimage.2016.11.054. Epub 2016 Nov 23.
5
Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults.
Neuroimage. 2016 Sep;138:147-163. doi: 10.1016/j.neuroimage.2016.05.025. Epub 2016 May 11.
6
Magnetic resonance imaging for assessment of cerebrovascular reactivity in cerebral small vessel disease: A systematic review.
J Cereb Blood Flow Metab. 2016 May;36(5):833-41. doi: 10.1177/0271678X16631756. Epub 2016 Feb 16.
7
Vascular autorescaling of fMRI (VasA fMRI) improves sensitivity of population studies: A pilot study.
Neuroimage. 2016 Jan 1;124(Pt A):794-805. doi: 10.1016/j.neuroimage.2015.09.033. Epub 2015 Sep 28.
8
On the optimization of imaging protocol for the mapping of cerebrovascular reactivity.
J Magn Reson Imaging. 2016 Mar;43(3):661-8. doi: 10.1002/jmri.25028. Epub 2015 Aug 13.
9
Cerebral Vascular Injury in Traumatic Brain Injury.
Exp Neurol. 2016 Jan;275 Pt 3:353-366. doi: 10.1016/j.expneurol.2015.05.019. Epub 2015 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验