Suppr超能文献

密集残差网络:增强字符识别的全局密集特征流。

Dense Residual Network: Enhancing global dense feature flow for character recognition.

机构信息

School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Knowledge Engineering with Big Data (Ministry of Education) & Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei 230009, China.

School of Computer Science and Technology, Soochow University, Suzhou 215006, China.

出版信息

Neural Netw. 2021 Jul;139:77-85. doi: 10.1016/j.neunet.2021.02.005. Epub 2021 Feb 25.

Abstract

Deep Convolutional Neural Networks (CNNs), such as Dense Convolutional Network (DenseNet), have achieved great success for image representation learning by capturing deep hierarchical features. However, most existing network architectures of simply stacking the convolutional layers fail to enable them to fully discover local and global feature information between layers. In this paper, we mainly investigate how to enhance the local and global feature learning abilities of DenseNet by fully exploiting the hierarchical features from all convolutional layers. Technically, we propose an effective convolutional deep model termed Dense Residual Network (DRN) for the task of optical character recognition. To define DRN, we propose a refined residual dense block (r-RDB) to retain the ability of local feature fusion and local residual learning of original RDB, which can reduce the computing efforts of inner layers at the same time. After fully capturing local residual dense features, we utilize the sum operation and several r-RDBs to construct a new block termed global dense block (GDB) by imitating the construction of dense blocks to adaptively learn global dense residual features in a holistic way. Finally, we use two convolutional layers to design a down-sampling block to reduce the global feature size and extract more informative deeper features. Extensive results show that our DRN can deliver enhanced results, compared with other related deep models.

摘要

深度卷积神经网络(CNNs),如密集卷积网络(DenseNet),通过捕获深层层次特征,在图像表示学习方面取得了巨大成功。然而,现有的大多数网络架构只是简单地堆叠卷积层,无法充分发掘层间的局部和全局特征信息。在本文中,我们主要研究如何通过充分利用所有卷积层的层次特征,来增强 DenseNet 的局部和全局特征学习能力。在技术上,我们提出了一种有效的卷积深度学习模型,称为密集残差网络(DRN),用于光学字符识别任务。为了定义 DRN,我们提出了一种改进的残差密集块(r-RDB),以保留原始 RDB 的局部特征融合和局部残差学习能力,同时减少内层的计算量。在充分捕获局部残差密集特征后,我们利用求和操作和多个 r-RDB 构建了一个新的块,称为全局密集块(GDB),通过模仿密集块的构建方式,自适应地学习全局密集残差特征。最后,我们使用两个卷积层设计了一个下采样块,以减少全局特征大小并提取更具信息量的更深层特征。广泛的实验结果表明,与其他相关的深度模型相比,我们的 DRN 可以提供更好的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验