Haugland Tor S, Schäfer Christian, Ronca Enrico, Rubio Angel, Koch Henrik
Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
Max Planck Institute for the Structure and Dynamics of Matter and Center Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
J Chem Phys. 2021 Mar 7;154(9):094113. doi: 10.1063/5.0039256.
Intermolecular bonds are weak compared to covalent bonds, but they are strong enough to influence the properties of large molecular systems. In this work, we investigate how strong light-matter coupling inside an optical cavity can modify intermolecular forces and illustrate the varying necessity of correlation in their description. The electromagnetic field inside the cavity can modulate the ground state properties of weakly bound complexes. Tuning the field polarization and cavity frequency, the interactions can be stabilized or destabilized, and electron densities, dipole moments, and polarizabilities can be altered. We demonstrate that electron-photon correlation is fundamental to describe intermolecular interactions in strong light-matter coupling. This work proposes optical cavities as a novel tool to manipulate and control ground state properties, solvent effects, and intermolecular interactions for molecules and materials.
与共价键相比,分子间键较弱,但它们足够强,能够影响大分子系统的性质。在这项工作中,我们研究了光学腔内强光与物质的耦合如何改变分子间力,并说明了在描述这些力时相关性的不同必要性。腔内的电磁场可以调节弱束缚复合物的基态性质。通过调整场极化和腔频率,相互作用可以得到稳定或不稳定,电子密度、偶极矩和极化率也可以改变。我们证明,电子-光子相关性是描述强光与物质强耦合中分子间相互作用的基础。这项工作提出将光学腔作为一种新型工具,用于操纵和控制分子与材料的基态性质、溶剂效应和分子间相互作用。