Liu Zhen, Wang Xiao
Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
Phys Chem Chem Phys. 2024 Sep 18;26(36):23646-23653. doi: 10.1039/d4cp01816h.
We conducted a theoretical investigation on the modulation of plasmon-like resonances in naphthalene - the so-called molecular plasmons - through intermolecular interactions and strong light-matter coupling. The configuration interaction with single excitations (CIS) approach and its quantum electrodynamics extension (QED-CIS-1) are used to describe the molecular plasmon states under these interactions. We detail the effects of changing intermolecular distances of the naphthalene dimer and incorporating the naphthalene molecule into optical cavities, both allowing for precise control of naphthalene's plasmonic responses. Our results show significant shifts of the plasmon peak in the absorption spectra of naphthalene, depending on the spatial configuration of the dimer and cavity parameters such as polarization, frequency, and coupling strength. Further investigation of the naphthalene dimer in a cavity reveals a synergistic effect on the plasmon peak when the two types of interactions are combined. This research provides insights into the plasmonic behavior of simple polyacenes like naphthalene and opens up possibilities for plasmon modulation in more complex systems.
我们通过分子间相互作用和强光-物质耦合,对萘中类似等离激元共振(即所谓的分子等离激元)的调制进行了理论研究。采用单激发组态相互作用(CIS)方法及其量子电动力学扩展(QED-CIS-1)来描述这些相互作用下的分子等离激元态。我们详细阐述了改变萘二聚体分子间距离以及将萘分子纳入光学腔的影响,这两者都能精确控制萘的等离激元响应。我们的结果表明,萘吸收光谱中等离激元峰有显著位移,这取决于二聚体的空间构型以及诸如极化、频率和耦合强度等腔参数。对腔内萘二聚体的进一步研究揭示,当这两种相互作用结合时,对等离激元峰有协同效应。这项研究为萘等简单多并苯的等离激元行为提供了见解,并为更复杂系统中的等离激元调制开辟了可能性。