Suppr超能文献

COVID-19 感染的免疫表观遗传学见解。

An immune epigenetic insight to COVID-19 infection.

机构信息

Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India.

Regional Institute of Ophthalmology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 220115, India.

出版信息

Epigenomics. 2021 Mar;13(6):465-480. doi: 10.2217/epi-2020-0349. Epub 2021 Mar 9.

Abstract

Severe acute respiratory syndrome coronavirus-2 is a positive-sense RNA virus, a causal agent of ongoing COVID-19 pandemic. methylation across three CpG sites (cg04013915, cg08559914, cg03536816) determines the host cell's entry. It regulates ACE2 expression by controlling the SIRT1 and KDM5B activity. Further, it regulates Type I and III IFN response by modulating H3K27me3 and H3K4me3 histone mark. SARS-CoV-2 protein with bromodomain and protein E mimics bromodomain histones and evades from host immune response. The 2'-O MTases mimics the host's cap1 structure and plays a vital role in immune evasion through Hsp90-mediated epigenetic process to hijack the infected cells. Although the current review highlighted the critical epigenetic events associated with SARS-CoV-2 immune evasion, the detailed mechanism is yet to be elucidated.

摘要

严重急性呼吸综合征冠状病毒 2 是一种正链 RNA 病毒,是持续 COVID-19 大流行的病原体。三个 CpG 位点(cg04013915、cg08559914、cg03536816)的甲基化决定了宿主细胞的进入。它通过控制 SIRT1 和 KDM5B 的活性来调节 ACE2 的表达。此外,它通过调节 H3K27me3 和 H3K4me3 组蛋白标记来调节 I 型和 III 型 IFN 反应。带有溴结构域和蛋白 E 的 SARS-CoV-2 蛋白模拟溴结构域组蛋白,并通过 HSP90 介导的表观遗传过程逃避宿主免疫反应。2'-O MTases 模拟宿主的 cap1 结构,并通过劫持感染细胞来发挥至关重要的免疫逃避作用。尽管目前的综述强调了与 SARS-CoV-2 免疫逃避相关的关键表观遗传事件,但详细的机制仍有待阐明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d8c/7958646/393eb31025da/figure1.jpg

相似文献

1
An immune epigenetic insight to COVID-19 infection.
Epigenomics. 2021 Mar;13(6):465-480. doi: 10.2217/epi-2020-0349. Epub 2021 Mar 9.
2
Epigenetic mechanisms influencing COVID-19.
Genome. 2021 Apr;64(4):372-385. doi: 10.1139/gen-2020-0135. Epub 2021 Jan 4.
3
Involvement of epigenetics in affecting host immunity during SARS-CoV-2 infection.
Biochim Biophys Acta Mol Basis Dis. 2023 Mar;1869(3):166634. doi: 10.1016/j.bbadis.2022.166634. Epub 2022 Dec 26.
4
The unfavorable clinical outcome of COVID-19 in smokers is mediated by H3K4me3, H3K9me3 and H3K27me3 histone marks.
Epigenomics. 2022 Feb;14(3):153-162. doi: 10.2217/epi-2021-0476. Epub 2022 Jan 13.
5
Genetic and epigenetic control of ACE2 expression and its possible role in COVID-19.
Cell Biochem Funct. 2021 Aug;39(6):713-726. doi: 10.1002/cbf.3648. Epub 2021 Jun 1.
8
Epigenetic alterations and genetic variations of angiotensin-converting enzyme 2 (ACE2) as a functional receptor for SARS-CoV-2: potential clinical implications.
Eur J Clin Microbiol Infect Dis. 2021 Aug;40(8):1587-1598. doi: 10.1007/s10096-021-04264-9. Epub 2021 May 3.

引用本文的文献

2
Cellular and epigenetic perspective of protein stability and its implications in the biological system.
Epigenomics. 2024;16(11-12):879-900. doi: 10.1080/17501911.2024.2351788. Epub 2024 Jun 17.
3
Epigenetic repression of antiviral genes by SARS-CoV-2 NSP1.
PLoS One. 2024 Jan 26;19(1):e0297262. doi: 10.1371/journal.pone.0297262. eCollection 2024.
4
Virus hijacking of host epigenetic machinery to impair immune response.
J Virol. 2023 Sep 28;97(9):e0065823. doi: 10.1128/jvi.00658-23. Epub 2023 Sep 1.
5
Epigenetic perspectives associated with COVID-19 infection and related cytokine storm: an updated review.
Infection. 2023 Dec;51(6):1603-1618. doi: 10.1007/s15010-023-02017-8. Epub 2023 Mar 12.
7
Epigenetic Targets and Pathways Linked to SARS-CoV-2 Infection and Pathology.
Microorganisms. 2023 Jan 30;11(2):341. doi: 10.3390/microorganisms11020341.
8
Protein post-translational modification in SARS-CoV-2 and host interaction.
Front Immunol. 2023 Jan 13;13:1068449. doi: 10.3389/fimmu.2022.1068449. eCollection 2022.
9
Involvement of epigenetics in affecting host immunity during SARS-CoV-2 infection.
Biochim Biophys Acta Mol Basis Dis. 2023 Mar;1869(3):166634. doi: 10.1016/j.bbadis.2022.166634. Epub 2022 Dec 26.
10
As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases.
Immune Netw. 2022 Jun 20;22(3):e21. doi: 10.4110/in.2022.22.e21. eCollection 2022 Jun.

本文引用的文献

1
On the origin and continuing evolution of SARS-CoV-2.
Natl Sci Rev. 2020 Jun;7(6):1012-1023. doi: 10.1093/nsr/nwaa036. Epub 2020 Mar 3.
2
Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients.
Natl Sci Rev. 2020 Jun;7(6):998-1002. doi: 10.1093/nsr/nwaa041. Epub 2020 Mar 13.
3
Immune Memory in Mild COVID-19 Patients and Unexposed Donors Reveals Persistent T Cell Responses After SARS-CoV-2 Infection.
Front Immunol. 2021 Mar 11;12:636768. doi: 10.3389/fimmu.2021.636768. eCollection 2021.
5
Cytokine Levels in Critically Ill Patients With COVID-19 and Other Conditions.
JAMA. 2020 Sep 3;324(15):1565-7. doi: 10.1001/jama.2020.17052.
6
Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2.
Am J Respir Crit Care Med. 2020 Sep 1;202(5):756-759. doi: 10.1164/rccm.202001-0179LE.
7
Is a "Cytokine Storm" Relevant to COVID-19?
JAMA Intern Med. 2020 Sep 1;180(9):1152-1154. doi: 10.1001/jamainternmed.2020.3313.
8
ACE2 Expression Is Increased in the Lungs of Patients With Comorbidities Associated With Severe COVID-19.
J Infect Dis. 2020 Jul 23;222(4):556-563. doi: 10.1093/infdis/jiaa332.
9
A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.
Nature. 2020 Jul;583(7816):459-468. doi: 10.1038/s41586-020-2286-9. Epub 2020 Apr 30.
10
Coronavirus (COVID-19): A Review of Clinical Features, Diagnosis, and Treatment.
Cureus. 2020 Mar 21;12(3):e7355. doi: 10.7759/cureus.7355.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验