cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
BMC Ecol Evol. 2021 Mar 8;21(1):38. doi: 10.1186/s12862-021-01767-z.
The circadian clock is a biological timing system that improves the ability of organisms to deal with environmental fluctuations. At the molecular level it consists of a network of transcription-translation feedback loops, involving genes that activate (bmal and clock - positive loop) and repress expression (cryptochrome (cry) and period (per) - negative loop). This is regulated by daily alternations of light but can also be affected by temperature. Fish, as ectothermic, depend on the environmental temperature and thus are good models to study its integration within the circadian system. Here, we studied the molecular evolution of circadian genes in four Squalius freshwater fish species, distributed across Western Iberian rivers affected by two climatic types with different environmental conditions (e.g., light and temperature). S. carolitertii and S. pyrenaicus inhabit the colder northern region under Atlantic climate type, while S. torgalensis, S. aradensis and some populations of S. pyrenaicus inhabit the warmer southern region affected by summer droughts, under Mediterranean climate type.
We identified 16 circadian-core genes in the Squalius species using a comparative transcriptomics approach. We detected evidence of positive selection in 12 of these genes using methods based on dN/dS. Positive selection was mainly found in cry and per genes of the negative loop, with 55 putatively adaptive substitutions, 16 located on protein domains. Evidence for positive selection is predominant in southern populations affected by the Mediterranean climate type. By predicting protein features we found that changes at sites under positive selection can impact protein thermostability by changing their aliphatic index and isoelectric point. Additionally, in nine genes, the phylogenetic clustering of species that belong to different clades but inhabit southern basins with similar environmental conditions indicated evolutionary convergence. We found evidence for increased nonsynonymous substitution rate in convergent lineages, likely due to positive selection at 27 sites, mostly in cry genes.
Our results support that temperature may be a selective pressure driving the evolution of genes involved in the circadian system. By integrating sequence-based functional protein prediction with dN/dS-based methods to detect selection we uncovered adaptive convergence in the southern populations, probably related to their similar thermal conditions.
生物钟是一种生物计时系统,可提高生物体应对环境波动的能力。从分子水平上看,它由转录-翻译反馈环网络组成,涉及激活(bmal 和时钟-正回路)和抑制表达(隐花色素(cry)和周期(per)-负回路)的基因。这受昼夜交替的光照调节,但也可能受到温度的影响。鱼类作为变温动物,依赖于环境温度,因此是研究其在生物钟系统内整合的良好模型。在这里,我们研究了分布在受两种气候类型影响的西伊比利亚河流中的四种 Squalius 淡水鱼类的生物钟基因的分子进化,这两种气候类型具有不同的环境条件(例如光照和温度)。S. carolitertii 和 S. pyrenaicus 栖息在受大西洋气候类型影响的较冷的北部地区,而 S. torgalensis、S. aradensis 和 S. pyrenaicus 的一些种群则栖息在受夏季干旱影响的温暖的南部地区,受地中海气候类型影响。
我们使用比较转录组学方法在 Squalius 物种中鉴定了 16 个生物钟核心基因。我们使用基于 dN/dS 的方法检测到其中 12 个基因存在正选择的证据。正选择主要发生在负环的 cry 和 per 基因中,有 55 个假定的适应性替换,其中 16 个位于蛋白质结构域上。在受地中海气候类型影响的南部种群中,正选择的证据占主导地位。通过预测蛋白质特征,我们发现正选择位点的变化可以通过改变其脂肪指数和等电点来影响蛋白质的热稳定性。此外,在 9 个基因中,属于不同进化枝但栖息在具有相似环境条件的南部流域的物种的系统发育聚类表明进化趋同。我们发现,在 27 个位点上,由于正选择,趋同进化枝的非同义替换率增加,这些位点主要位于 cry 基因中。
我们的研究结果表明,温度可能是驱动生物钟系统相关基因进化的选择压力。通过将基于序列的功能蛋白预测与基于 dN/dS 的方法相结合来检测选择,我们揭示了南部种群的适应性趋同,这可能与它们相似的热条件有关。