Suppr超能文献

一种多尺度卷积神经网络,具有上下文信息,用于联合分割视盘和杯。

A multi-scale convolutional neural network with context for joint segmentation of optic disc and cup.

机构信息

College of Electrical Engineering, Sichuan University, Chengdu, Sichuan, China.

Department of Ophthalmology, First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China.

出版信息

Artif Intell Med. 2021 Mar;113:102035. doi: 10.1016/j.artmed.2021.102035. Epub 2021 Feb 17.

Abstract

Glaucoma is the leading cause of irreversible blindness. For glaucoma screening, the cup to disc ratio (CDR) is a significant indicator, whose calculation relies on the segmentation of optic disc(OD) and optic cup(OC) in color fundus images. This study proposes a residual multi-scale convolutional neural network with a context semantic extraction module to jointly segment the OD and OC. The proposed method uses a W-shaped backbone network, including image pyramid multi-scale input with the side output layer as an early classifier to generate local prediction output. The proposed method includes a context extraction module that extracts contextual semantic information from multiple level receptive field sizes and adaptively recalibrates channel-wise feature responses. It can effectively extract global information and reduce the semantic gaps in the fusion of deep and shallow semantic information. We validated the proposed method on four datasets, including DRISHTI-GS1, REFUGE, RIM-ONE r3, and a private dataset. The overlap errors are 0.0540, 0.0684, 0.0492, 0.0511 in OC segmentation and 0.2332, 0.1777, 0.2372, 0.2547 in OD segmentation, respectively. Experimental results indicate that the proposed method can estimate the CDR for a large-scale glaucoma screening.

摘要

青光眼是导致不可逆性失明的主要原因。在青光眼筛查中,杯盘比(CDR)是一个重要指标,其计算依赖于眼底彩色图像中视盘(OD)和视杯(OC)的分割。本研究提出了一种具有上下文语义提取模块的残差多尺度卷积神经网络,用于联合分割 OD 和 OC。所提出的方法使用 W 形骨干网络,包括图像金字塔多尺度输入和侧输出层作为早期分类器,以生成局部预测输出。该方法包括一个上下文提取模块,该模块从多个感受野大小中提取上下文语义信息,并自适应地重新校准通道特征响应。它可以有效地提取全局信息,并减少深层和浅层语义信息融合中的语义差距。我们在四个数据集上验证了所提出的方法,包括 DRISHTI-GS1、REFUGE、RIM-ONE r3 和一个私有数据集。OC 分割的重叠误差分别为 0.0540、0.0684、0.0492、0.0511,OD 分割的重叠误差分别为 0.2332、0.1777、0.2372、0.2547。实验结果表明,所提出的方法可以用于大规模青光眼筛查的 CDR 估计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验