Suppr超能文献

深度人工智能败血症早期预测可解释和递归神经网络生存模型

DeepAISE - An interpretable and recurrent neural survival model for early prediction of sepsis.

机构信息

Division of Biomedical Informatics, University of California San Diego, La Jolla, USA.

Department of Surgery, Emory University School of Medicine, Atlanta, USA.

出版信息

Artif Intell Med. 2021 Mar;113:102036. doi: 10.1016/j.artmed.2021.102036. Epub 2021 Feb 13.

Abstract

Sepsis, a dysregulated immune system response to infection, is among the leading causes of morbidity, mortality, and cost overruns in the Intensive Care Unit (ICU). Early prediction of sepsis can improve situational awareness among clinicians and facilitate timely, protective interventions. While the application of predictive analytics in ICU patients has shown early promising results, much of the work has been encumbered by high false-alarm rates and lack of trust by the end-users due to the 'black box' nature of these models. Here, we present DeepAISE (Deep Artificial Intelligence Sepsis Expert), a recurrent neural survival model for the early prediction of sepsis. DeepAISE automatically learns predictive features related to higher-order interactions and temporal patterns among clinical risk factors that maximize the data likelihood of observed time to septic events. A comparative study of four baseline models on data from hospitalized patients at three different healthcare systems indicates that DeepAISE produces the most accurate predictions (AUCs between 0.87 and 0.90) at the lowest false alarm rates (FARs between 0.20 and 0.25) while simultaneously producing interpretable representations of the clinical time series and risk factors.

摘要

脓毒症是一种免疫系统对感染的失调反应,是重症监护病房(ICU)发病率、死亡率和成本超支的主要原因之一。脓毒症的早期预测可以提高临床医生的情况意识,并促进及时、保护性的干预。虽然预测分析在 ICU 患者中的应用已经显示出早期有希望的结果,但由于这些模型的“黑盒”性质,由于高误报率和最终用户缺乏信任,大部分工作都受到了阻碍。在这里,我们提出了 DeepAISE(深度学习脓毒症专家),这是一种用于脓毒症早期预测的递归神经网络生存模型。DeepAISE 自动学习与临床危险因素之间的高阶相互作用和时间模式相关的预测特征,这些特征可以最大限度地提高观察到的脓毒症事件时间的似然性。在来自三个不同医疗保健系统的住院患者数据上对四个基线模型进行的比较研究表明,DeepAISE 产生了最准确的预测(AUC 在 0.87 到 0.90 之间),同时产生了可解释的临床时间序列和风险因素表示。

相似文献

1
DeepAISE - An interpretable and recurrent neural survival model for early prediction of sepsis.
Artif Intell Med. 2021 Mar;113:102036. doi: 10.1016/j.artmed.2021.102036. Epub 2021 Feb 13.
2
An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.
Crit Care Med. 2018 Apr;46(4):547-553. doi: 10.1097/CCM.0000000000002936.
3
Transferability and interpretability of the sepsis prediction models in the intensive care unit.
BMC Med Inform Decis Mak. 2022 Dec 29;22(1):343. doi: 10.1186/s12911-022-02090-3.
4
Interpretable machine-learning model for real-time, clustered risk factor analysis of sepsis and septic death in critical care.
Comput Methods Programs Biomed. 2023 Nov;241:107772. doi: 10.1016/j.cmpb.2023.107772. Epub 2023 Aug 20.
5
The development an artificial intelligence algorithm for early sepsis diagnosis in the intensive care unit.
Int J Med Inform. 2020 Sep;141:104176. doi: 10.1016/j.ijmedinf.2020.104176. Epub 2020 May 21.
9
Sepsis Care Pathway 2019.
Qatar Med J. 2019 Nov 7;2019(2):4. doi: 10.5339/qmj.2019.qccc.4. eCollection 2019.

引用本文的文献

1
Bug Wars: Artificial Intelligence Strikes Back in Sepsis Management.
Diagnostics (Basel). 2025 Jul 28;15(15):1890. doi: 10.3390/diagnostics15151890.
2
Can we predict the future of respiratory failure prediction?
Crit Care. 2025 Jun 19;29(1):253. doi: 10.1186/s13054-025-05484-7.
3
Machine learning model for daily prediction of pediatric sepsis using Phoenix criteria.
Pediatr Res. 2025 Jun 19. doi: 10.1038/s41390-025-04221-8.
4
Quantifying Healthcare Provider Perceptions of a Novel Deep Learning Algorithm to Predict Sepsis: Electronic Survey.
Crit Care Explor. 2025 Jun 4;7(6):e1276. doi: 10.1097/CCE.0000000000001276. eCollection 2025 Jun 1.
5
Time-series deep learning and conformal prediction for improved sepsis diagnosis in primarily Non-ICU hospitalized patients.
Comput Biol Med. 2025 Jul;193:110497. doi: 10.1016/j.compbiomed.2025.110497. Epub 2025 May 31.
6
8
Artificial Intelligence in Sepsis Management: An Overview for Clinicians.
J Clin Med. 2025 Jan 6;14(1):286. doi: 10.3390/jcm14010286.
9
10
Early detection of sepsis using machine learning algorithms: a systematic review and network meta-analysis.
Front Med (Lausanne). 2024 Oct 16;11:1491358. doi: 10.3389/fmed.2024.1491358. eCollection 2024.

本文引用的文献

1
Early Prediction of Sepsis in the ICU Using Machine Learning: A Systematic Review.
Front Med (Lausanne). 2021 May 28;8:607952. doi: 10.3389/fmed.2021.607952. eCollection 2021.
3
Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy.
Intensive Care Med. 2020 Mar;46(3):383-400. doi: 10.1007/s00134-019-05872-y. Epub 2020 Jan 21.
5
Epidemiology and Predictors of 30-Day Readmission in Patients With Sepsis.
Chest. 2019 Mar;155(3):483-490. doi: 10.1016/j.chest.2018.12.008.
6
The challenge of implementing AI models in the ICU.
Lancet Respir Med. 2018 Dec;6(12):886-888. doi: 10.1016/S2213-2600(18)30412-0. Epub 2018 Nov 8.
7
Clinical Decision Support in the Era of Artificial Intelligence.
JAMA. 2018 Dec 4;320(21):2199-2200. doi: 10.1001/jama.2018.17163.
8
Sepsis early warning scoring systems: The ideal tool remains elusive!
J Crit Care. 2019 Aug;52:251-253. doi: 10.1016/j.jcrc.2018.07.009. Epub 2018 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验