Division of Biomedical Informatics, University of California San Diego, La Jolla, USA.
Department of Surgery, Emory University School of Medicine, Atlanta, USA.
Artif Intell Med. 2021 Mar;113:102036. doi: 10.1016/j.artmed.2021.102036. Epub 2021 Feb 13.
Sepsis, a dysregulated immune system response to infection, is among the leading causes of morbidity, mortality, and cost overruns in the Intensive Care Unit (ICU). Early prediction of sepsis can improve situational awareness among clinicians and facilitate timely, protective interventions. While the application of predictive analytics in ICU patients has shown early promising results, much of the work has been encumbered by high false-alarm rates and lack of trust by the end-users due to the 'black box' nature of these models. Here, we present DeepAISE (Deep Artificial Intelligence Sepsis Expert), a recurrent neural survival model for the early prediction of sepsis. DeepAISE automatically learns predictive features related to higher-order interactions and temporal patterns among clinical risk factors that maximize the data likelihood of observed time to septic events. A comparative study of four baseline models on data from hospitalized patients at three different healthcare systems indicates that DeepAISE produces the most accurate predictions (AUCs between 0.87 and 0.90) at the lowest false alarm rates (FARs between 0.20 and 0.25) while simultaneously producing interpretable representations of the clinical time series and risk factors.
脓毒症是一种免疫系统对感染的失调反应,是重症监护病房(ICU)发病率、死亡率和成本超支的主要原因之一。脓毒症的早期预测可以提高临床医生的情况意识,并促进及时、保护性的干预。虽然预测分析在 ICU 患者中的应用已经显示出早期有希望的结果,但由于这些模型的“黑盒”性质,由于高误报率和最终用户缺乏信任,大部分工作都受到了阻碍。在这里,我们提出了 DeepAISE(深度学习脓毒症专家),这是一种用于脓毒症早期预测的递归神经网络生存模型。DeepAISE 自动学习与临床危险因素之间的高阶相互作用和时间模式相关的预测特征,这些特征可以最大限度地提高观察到的脓毒症事件时间的似然性。在来自三个不同医疗保健系统的住院患者数据上对四个基线模型进行的比较研究表明,DeepAISE 产生了最准确的预测(AUC 在 0.87 到 0.90 之间),同时产生了可解释的临床时间序列和风险因素表示。