Suppr超能文献

使用机器学习算法早期检测败血症:一项系统评价和网状荟萃分析

Early detection of sepsis using machine learning algorithms: a systematic review and network meta-analysis.

作者信息

Yadgarov Mikhail Ya, Landoni Giovanni, Berikashvili Levan B, Polyakov Petr A, Kadantseva Kristina K, Smirnova Anastasia V, Kuznetsov Ivan V, Shemetova Maria M, Yakovlev Alexey A, Likhvantsev Valery V

机构信息

Federal Research and Clinical Centre of Intensive Care Medicine and Rehabilitology, Moscow, Russia.

Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy.

出版信息

Front Med (Lausanne). 2024 Oct 16;11:1491358. doi: 10.3389/fmed.2024.1491358. eCollection 2024.

Abstract

BACKGROUND

With machine learning (ML) carving a niche in diverse medical disciplines, its role in sepsis prediction, a condition where the 'golden hour' is critical, is of paramount interest. This study assesses the factors influencing the efficacy of ML models in sepsis prediction, aiming to optimize their use in clinical practice.

METHODS

We searched Medline, PubMed, Google Scholar, and CENTRAL for studies published from inception to October 2023. We focused on studies predicting sepsis in real-time settings in adult patients in any hospital settings without language limits. The primary outcome was area under the curve (AUC) of the receiver operating characteristic. This meta-analysis was conducted according to PRISMA-NMA guidelines and Cochrane Handbook recommendations. A Network Meta-Analysis using the CINeMA approach compared ML models against traditional scoring systems, with meta-regression identifying factors affecting model quality.

RESULTS

From 3,953 studies, 73 articles encompassing 457,932 septic patients and 256 models were analyzed. The pooled AUC for ML models was 0.825 and it significantly outperformed traditional scoring systems. Neural Network and Decision Tree models demonstrated the highest AUC metrics. Significant factors influencing AUC included ML model type, dataset type, and prediction window.

CONCLUSION

This study establishes the superiority of ML models, especially Neural Network and Decision Tree types, in sepsis prediction. It highlights the importance of model type and dataset characteristics for prediction accuracy, emphasizing the necessity for standardized reporting and validation in ML healthcare applications. These findings call for broader clinical implementation to evaluate the effectiveness of these models in diverse patient groups.

SYSTEMATIC REVIEW REGISTRATION

https://inplasy.com/inplasy-2023-12-0062/, identifier, INPLASY2023120062.

摘要

背景

随着机器学习(ML)在各种医学学科中占据一席之地,其在脓毒症预测中的作用备受关注,因为在脓毒症这种“黄金一小时”至关重要的病症中,其作用至关重要。本研究评估影响ML模型在脓毒症预测中疗效的因素,旨在优化其在临床实践中的应用。

方法

我们检索了Medline、PubMed、谷歌学术和CENTRAL数据库,查找从数据库建立到2023年10月发表的研究。我们重点关注在任何医院环境中对成年患者进行实时脓毒症预测的研究,无语言限制。主要结局是受试者工作特征曲线下面积(AUC)。本荟萃分析根据PRISMA-NMA指南和Cochrane手册建议进行。使用CINeMA方法的网络荟萃分析将ML模型与传统评分系统进行比较,荟萃回归确定影响模型质量的因素。

结果

从3953项研究中,分析了73篇文章,涵盖457932名脓毒症患者和256个模型。ML模型的合并AUC为0.825,显著优于传统评分系统。神经网络和决策树模型表现出最高的AUC指标。影响AUC的显著因素包括ML模型类型、数据集类型和预测窗口。

结论

本研究确立了ML模型,尤其是神经网络和决策树类型,在脓毒症预测中的优越性。它突出了模型类型和数据集特征对预测准确性的重要性,强调了ML医疗应用中标准化报告和验证的必要性。这些发现呼吁更广泛的临床应用,以评估这些模型在不同患者群体中的有效性。

系统评价注册

https://inplasy.com/inplasy-2023-12-0062/,标识符,INPLASY2023120062。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd19/11523135/65a3ce31c583/fmed-11-1491358-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验