Perissinotto Fabio, Rondelli Valeria, Senigagliesi Beatrice, Brocca Paola, Almásy László, Bottyán László, Merkel Dániel Géza, Amenitsch Heinz, Sartori Barbara, Pachler Karin, Mayr Magdalena, Gimona Mario, Rohde Eva, Casalis Loredana, Parisse Pietro
Elettra Sincrotrone Trieste, Trieste, Italy.
Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy.
Nanoscale. 2021 Mar 18;13(10):5224-5233. doi: 10.1039/d0nr09075a.
Extracellular vesicles (EVs) are a potent intercellular communication system. Such small vesicles transport biomolecules between cells and throughout the body, strongly influencing the fate of recipient cells. Due to their specific biological functions they have been proposed as biomarkers for various diseases and as optimal candidates for therapeutic applications. Despite their extreme biological relevance, their mechanisms of interaction with the membranes of recipient cells are still hotly debated. Here, we propose a multiscale investigation based on atomic force microscopy, small angle X-ray scattering, small angle neutron scattering and neutron reflectometry to reveal structure-function correlations of purified EVs in interaction with model membrane systems of variable complex compositions and to spot the role of different membrane phases on the vesicle internalization routes. Our analysis reveals strong interactions of EVs with the model membranes and preferentially with the borders of protruding phase domains. Moreover, we found that upon vesicle breaking on the model membrane surface, the biomolecules carried by/on EVs diffuse with different kinetics rates, in a process distinct from simple fusion. The biophysical platform proposed here has clear implications on the modulation of EV internalization routes by targeting specific domains at the plasma cell membrane and, as a consequence, on EV-based therapies.
细胞外囊泡(EVs)是一种强大的细胞间通讯系统。这类小囊泡在细胞之间以及全身运输生物分子,对受体细胞的命运产生重大影响。由于其特定的生物学功能,它们被提议作为各种疾病的生物标志物以及治疗应用的理想候选物。尽管它们具有极其重要的生物学意义,但其与受体细胞膜的相互作用机制仍备受争议。在此,我们提出一种基于原子力显微镜、小角X射线散射、小角中子散射和中子反射测量的多尺度研究,以揭示纯化的细胞外囊泡与具有不同复杂组成的模型膜系统相互作用时的结构 - 功能相关性,并确定不同膜相在囊泡内化途径中的作用。我们的分析揭示了细胞外囊泡与模型膜之间的强烈相互作用,且优先与突出相域的边界相互作用。此外,我们发现当囊泡在模型膜表面破裂时,细胞外囊泡携带的生物分子以不同的动力学速率扩散,这一过程不同于简单融合。本文提出的生物物理平台对于通过靶向质膜上的特定结构域来调节细胞外囊泡的内化途径具有明确的意义,进而对基于细胞外囊泡的治疗也具有重要意义。