Suppr超能文献

潜在类别中介模型在多个中介指标中的应用。

Latent class mediator for multiple indicators of mediation.

机构信息

Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, Connecticut, USA.

Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.

出版信息

Stat Med. 2021 May 30;40(12):2800-2820. doi: 10.1002/sim.8929. Epub 2021 Mar 9.

Abstract

This paper demonstrates the utility of latent classes in evaluating the effect of an intervention on an outcome through multiple indicators of mediation. These indicators are observed intermediate variables that identify an underlying latent class mediator, with each class representing a different mediating pathway. The use of a latent class mediator allows us to avoid modeling the complex interactions between the multiple indicators and ensures the decomposition of the total mediating effects into additive effects from individual mediating pathways, a desirable feature for evaluating multiple indicators of mediation. This method is suitable when the goal is to estimate the total mediating effects that can be decomposed into the additive effects of distinct mediating pathways. Each indicator may be involved in multiple mediation pathways and at the same time multiple indicators may contribute to a single mediating pathway. The relative importance of each pathway may vary across subjects. We applied this method to the analysis of the first 6 months of data from a 2-year clustered randomized trial for adults in their first episode of schizophrenia. Four indicators of mediation are considered: individual resiliency training; family psychoeducation; supported education and employment; and a structural assessment for medication. The improvement in symptoms was found to be mediated by the latent class mediator derived from these four service indicators. Simulation studies were conducted to assess the performance of the proposed model and showed that the simultaneous estimation through the maximum likelihood yielded little bias when the entropy of the indicators was high.

摘要

本文展示了潜在类别在通过多个中介指标评估干预对结果的影响方面的效用。这些指标是观察到的中间变量,用于识别潜在的类别中介变量,每个类别代表不同的中介途径。使用潜在类别中介变量可以避免对多个指标之间的复杂交互进行建模,并确保将总中介效应分解为来自个体中介途径的加性效应,这是评估多个中介指标的理想特征。当目标是估计可以分解为不同中介途径的加性效应的总中介效应时,这种方法是合适的。每个指标可能涉及多个中介途径,同时多个指标可能对单个中介途径有贡献。每个途径的相对重要性可能因个体而异。我们将这种方法应用于一项为期 2 年的聚类随机试验中成人首发精神分裂症患者前 6 个月数据的分析。考虑了四个中介指标:个体复原力训练、家庭心理教育、支持性教育和就业以及药物治疗的结构性评估。研究发现,这些服务指标所衍生的潜在类别中介变量可以介导症状的改善。进行了模拟研究来评估所提出模型的性能,结果表明当指标的熵值较高时,通过最大似然同时进行估计几乎没有偏差。

相似文献

1
3
Latent Class Mediation: A Comparison of Six Approaches.潜在类别中介分析:六种方法的比较。
Multivariate Behav Res. 2021 Jul-Aug;56(4):543-557. doi: 10.1080/00273171.2020.1771674. Epub 2020 Jun 11.
5
Counterfactual Mediation Analysis with a Latent Class Exposure.潜类暴露的反事实中介分析
Multivariate Behav Res. 2024 Jul-Aug;59(4):818-840. doi: 10.1080/00273171.2024.2335394. Epub 2024 May 31.
7
Causal mediation analysis with a latent mediator.具有潜在中介变量的因果中介分析。
Biom J. 2016 May;58(3):535-48. doi: 10.1002/bimj.201400124. Epub 2015 Sep 13.
9
Accommodating a Latent XM Interaction in Statistical Mediation Analysis.在统计中介分析中纳入潜在的X-M相互作用
Multivariate Behav Res. 2023 Jul-Aug;58(4):659-674. doi: 10.1080/00273171.2022.2119928. Epub 2022 Oct 12.

本文引用的文献

1
The Effects of Sample Size on the Estimation of Regression Mixture Models.样本量对回归混合模型估计的影响。
Educ Psychol Meas. 2019 Apr;79(2):358-384. doi: 10.1177/0013164418791673. Epub 2018 Aug 10.
7
Flexible Mediation Analysis With Multiple Mediators.具有多个中介变量的灵活中介分析
Am J Epidemiol. 2017 Jul 15;186(2):184-193. doi: 10.1093/aje/kwx051.
10
Causal mediation analysis with a latent mediator.具有潜在中介变量的因果中介分析。
Biom J. 2016 May;58(3):535-48. doi: 10.1002/bimj.201400124. Epub 2015 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验