Nicholls Harrison, Lichtenberg Tim, Bower Dan J, Pierrehumbert Raymond
Atmospheric Oceanic and Planetary Physics University of Oxford Oxford UK.
Kapteyn Astronomical Institute University of Groningen Groningen The Netherlands.
J Geophys Res Planets. 2024 Dec;129(12):e2024JE008576. doi: 10.1029/2024JE008576. Epub 2024 Dec 23.
Interactions between magma oceans and overlying atmospheres on young rocky planets leads to an evolving feedback of outgassing, greenhouse forcing, and mantle melt fraction. Previous studies have predominantly focused on the solidification of oxidized Earth-similar planets, but the diversity in mean density and irradiation observed in the low-mass exoplanet census motivate exploration of strongly varying geochemical scenarios. We aim to explore how variable redox properties alter the duration of magma ocean solidification, the equilibrium thermodynamic state, melt fraction of the mantle, and atmospheric composition. We develop a 1D coupled interior-atmosphere model that can simulate the time-evolution of lava planets. This is applied across a grid of fixed redox states, orbital separations, hydrogen endowments, and C/H ratios around a Sun-like star. The composition of these atmospheres is highly variable before and during solidification. The evolutionary path of an Earth-like planet at 1 AU ranges between permanent magma ocean states and solidification within 1 Myr. Recently solidified planets typically host - or -dominated atmospheres in the absence of escape. Orbital separation is the primary factor determining magma ocean evolution, followed by the total hydrogen endowment, mantle oxygen fugacity, and finally the planet's C/H ratio. Collisional absorption by induces a greenhouse effect which can prevent or stall magma ocean solidification. Through this effect, as well as the outgassing of other volatiles, geochemical properties exert significant control over the fate of magma oceans on rocky planets.
年轻岩石行星上的岩浆海洋与上层大气之间的相互作用会导致脱气、温室效应和地幔熔体分数的不断演变的反馈。先前的研究主要集中在与地球类似的氧化行星的固化上,但在低质量系外行星普查中观察到的平均密度和辐照的多样性促使人们探索变化很大的地球化学情景。我们旨在探索可变的氧化还原特性如何改变岩浆海洋固化的持续时间、平衡热力学状态、地幔熔体分数和大气成分。我们开发了一个一维内部-大气耦合模型,该模型可以模拟熔岩行星的时间演化。该模型应用于围绕类太阳恒星的固定氧化还原状态、轨道距离、氢含量和碳/氢比的网格。这些大气在固化之前和固化期间的组成变化很大。一颗位于1天文单位处的类地行星的演化路径介于永久岩浆海洋状态和100万年内固化之间。最近固化的行星在没有逃逸的情况下通常拥有以二氧化碳或氮气为主的大气。轨道距离是决定岩浆海洋演化的主要因素,其次是总氢含量、地幔氧逸度,最后是行星的碳/氢比。二氧化碳的碰撞吸收会引发温室效应,从而阻止或延缓岩浆海洋的固化。通过这种效应以及其他挥发物的脱气,地球化学性质对岩石行星上岩浆海洋的命运施加了重大控制。