Suppr超能文献

基于卷积神经网络,利用地理信息系统(GIS)和新冠疫情数据资料进行的新冠病毒感染传播分析。

Convolution neural network based infection transmission analysis on Covid-19 using GIS and Covid data materials.

作者信息

Jadhav Jagannath, Rao Surampudi Srinivasa, Alagirisamy Mukil

机构信息

Department of Electronics and Communication Engineering, Lincoln University College, Malaysia.

出版信息

Mater Today Proc. 2023;81:105-111. doi: 10.1016/j.matpr.2021.02.577. Epub 2021 Mar 4.

Abstract

Towards the improvement of predicting and analyzing the infection transmission, a novel CNN (Convolution Neural Network) based Covid Infection Transmission Analysis (CNN-CITA) is presented in this article. The method works based on both GIS data set and the Covid data set. The method reads all the data from the data sets. From the remote sensing data, the method extracts different climate conditions like temperature, humidity, and rainfall. Similarly from Global Information System data set, the locations of the peoples are fetched and merged. The merged data has been split into number of time frame, at each condition, the data sets are merged. Such merged data has been trained with deep learning networks which support the search of person location and mobility. Based on the result and the data set maintained by the governments, the infection transmission rate has been measured on region basis. In each region of movement performed by any person, the method computes the infection Transmission Rate (ITR) in two time window as before and after. According to the infection rate and ITR value of different region, a subset of sources are selected as vulnerable sources. The method produces higher performance in predicting the vulnerable sources and supports the reduction of infection rate.

摘要

为了改进对感染传播的预测和分析,本文提出了一种基于新型卷积神经网络(CNN)的新冠感染传播分析方法(CNN-CITA)。该方法基于地理信息系统(GIS)数据集和新冠数据集运行。该方法从数据集中读取所有数据。从遥感数据中,该方法提取不同的气候条件,如温度、湿度和降雨量。同样,从全球信息系统数据集中获取并合并人员的位置。合并后的数据被分割成多个时间框架,在每种条件下,数据集进行合并。这些合并后的数据使用支持人员位置和移动性搜索的深度学习网络进行训练。根据结果以及政府维护的数据集,按区域测量感染传播率。在任何人进行移动的每个区域中,该方法像之前一样在两个时间窗口内计算感染传播率(ITR)。根据不同区域的感染率和ITR值,选择一部分源头作为易感染源头。该方法在预测易感染源头方面具有更高的性能,并有助于降低感染率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0df9/7931681/6eebb142adb8/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验