Neves Ângela C B, Hrynchak Ivanna, Fonseca Inês, Alves Vítor H P, Pereira Mariette M, Falcão Amílcar, Abrunhosa Antero J
ICNAS/CIBIT - Institute for Nuclear Sciences Applied to Health, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
Coimbra Chemistry Center, Chemistry Department, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
EJNMMI Radiopharm Chem. 2021 Mar 10;6(1):11. doi: 10.1186/s41181-021-00126-z.
The neurotracer 6-[18F] FDOPA has been, for many years, a powerful tool in PET imaging of neuropsychiatric diseases, movement disorders and brain malignancies. More recently, it also demonstrated good results in the diagnosis of other malignancies such as neuroendocrine tumours, pheochromocytoma or pancreatic adenocarcinoma.The multiple clinical applications of this tracer fostered a very strong interest in the development of new and improved methods for its radiosynthesis. The no-carrier-added nucleophilic 18F-fluorination process has gained increasing attention, in recent years, due to the high molar activities obtained, when compared with the other methods although the radiochemical yield remains low (17-30%). This led to the development of several nucleophilic synthetic processes in order to obtain the product with molar activity, radiochemical yield and enantiomeric purity suitable for human PET studies.Automation of the synthetic processes is crucial for routine clinical use and compliance with GMP requirements. Nevertheless, the complexity of the synthesis makes the production challenging, increasing the chance of failure in routine production. Thus, for large-scale clinical application and wider use of this radiopharmaceutical, progress in the automation of this complex radiosynthesis is of critical importance.This review summarizes the most recent developments of 6-[18F]FDOPA radiosynthesis and discusses the key issues regarding its automation for routine clinical use.
多年来,神经示踪剂6-[18F]氟多巴一直是神经精神疾病、运动障碍和脑恶性肿瘤正电子发射断层显像(PET)中的有力工具。最近,它在神经内分泌肿瘤、嗜铬细胞瘤或胰腺腺癌等其他恶性肿瘤的诊断中也显示出良好效果。这种示踪剂的多种临床应用激发了人们对开发其放射性合成新方法和改进方法的浓厚兴趣。近年来,无载体添加亲核18F氟化过程越来越受到关注,因为与其他方法相比,尽管放射化学产率仍然较低(17%-30%),但能获得较高的摩尔活度。这促使人们开发了几种亲核合成方法,以获得具有适合人体PET研究的摩尔活度、放射化学产率和对映体纯度的产品。合成过程的自动化对于常规临床应用和符合药品生产质量管理规范(GMP)要求至关重要。然而,合成的复杂性使得生产具有挑战性,增加了常规生产失败的几率。因此,对于这种放射性药物的大规模临床应用和更广泛使用,这种复杂放射性合成自动化方面的进展至关重要。本综述总结了6-[18F]氟多巴放射性合成的最新进展,并讨论了其常规临床应用自动化的关键问题。