Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States.
Biognos AB, Box 8963, 40274 Göteborg, Sweden.
J Chem Theory Comput. 2021 Apr 13;17(4):2479-2487. doi: 10.1021/acs.jctc.0c01144. Epub 2021 Mar 10.
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mediates host cell entry by binding to angiotensin-converting enzyme 2 (ACE2) and is considered the major target for drug and vaccine development. We previously built fully glycosylated full-length SARS-CoV-2 S protein models in a viral membrane including both open and closed conformations of the receptor-binding domain (RBD) and different templates for the stalk region. In this work, multiple μs-long all-atom molecular dynamics simulations were performed to provide deeper insights into the structure and dynamics of S protein and glycan functions. Our simulations reveal that the highly flexible stalk is composed of two independent joints and most probable S protein orientations are competent for ACE2 binding. We identify multiple glycans stabilizing the open and/or closed states of the RBD and demonstrate that the exposure of antibody epitopes can be captured by detailed antibody-glycan clash analysis instead of commonly used accessible surface area analysis that tends to overestimate the impact of glycan shielding and neglect possible detailed interactions between glycan and antibodies. Overall, our observations offer structural and dynamic insights into the SARS-CoV-2 S protein and potentialize for guiding the design of effective antiviral therapeutics.
严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的刺突(S)蛋白通过与血管紧张素转换酶 2(ACE2)结合介导宿主细胞进入,被认为是药物和疫苗开发的主要靶点。我们之前在病毒膜中构建了全长 SARS-CoV-2 S 蛋白的完全糖基化模型,包括受体结合域(RBD)的开放和闭合构象以及茎区的不同模板。在这项工作中,进行了多次长达微秒的全原子分子动力学模拟,以更深入地了解 S 蛋白的结构和动力学以及聚糖的功能。我们的模拟表明,高度灵活的茎部由两个独立的关节组成,大多数可能的 S 蛋白构象都适合 ACE2 结合。我们确定了多个稳定 RBD 开放和/或闭合状态的聚糖,并证明可以通过详细的抗体-聚糖碰撞分析来捕获抗体表位的暴露,而不是常用的易接近表面积分析,后者往往高估聚糖屏蔽的影响并忽略聚糖和抗体之间可能存在的详细相互作用。总的来说,我们的观察结果提供了 SARS-CoV-2 S 蛋白的结构和动态见解,并为指导有效的抗病毒治疗药物的设计提供了可能性。