Saha Susmita, Zhou Jingyuan, Hofhuis Kevin, Kákay Attila, Scagnoli Valerio, Heyderman Laura J, Gliga Sebastian
Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
Nano Lett. 2021 Mar 24;21(6):2382-2389. doi: 10.1021/acs.nanolett.0c04294. Epub 2021 Mar 9.
Artificial spin ices are periodic arrangements of interacting nanomagnets which allow investigating emergent phenomena in the presence of geometric frustration. Recently, it has been shown that artificial spin ices can be used as building blocks for creating functional materials, such as magnonic crystals. We investigate the magnetization dynamics in a system exhibiting anisotropic magnetostatic interactions owing to locally broken structural inversion symmetry. We find a rich spin-wave spectrum and investigate its evolution in an external magnetic field. We determine the evolution of individual modes, from building blocks up to larger arrays, highlighting the role of symmetry breaking in defining the mode profiles. Moreover, we demonstrate that the mode spectra exhibit signatures of long-range interactions in the system. These results contribute to the understanding of magnetization dynamics in spin ices beyond the kagome and square ice geometries and are relevant for the realization of reconfigurable magnonic crystals based on spin ices.
人工自旋冰是相互作用的纳米磁体的周期性排列,它允许在存在几何阻挫的情况下研究涌现现象。最近,已经表明人工自旋冰可以用作构建功能材料(如磁振子晶体)的基本单元。我们研究了一个由于局部结构反演对称性破缺而表现出各向异性静磁相互作用的系统中的磁化动力学。我们发现了丰富的自旋波谱,并研究了其在外部磁场中的演化。我们确定了从基本单元到更大阵列的各个模式的演化,突出了对称性破缺在定义模式轮廓中的作用。此外,我们证明模式谱表现出系统中长程相互作用的特征。这些结果有助于理解除了 Kagome 和方形冰几何结构之外的自旋冰中的磁化动力学,并且与基于自旋冰的可重构磁振子晶体的实现相关。