Chaurasiya Avinash Kumar, Mondal Amrit Kumar, Gartside Jack C, Stenning Kilian D, Vanstone Alex, Barman Saswati, Branford Will R, Barman Anjan
Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata 700 106, India.
Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom.
ACS Nano. 2021 Jul 27;15(7):11734-11742. doi: 10.1021/acsnano.1c02537. Epub 2021 Jun 16.
Artificial spin ice systems have seen burgeoning interest due to their intriguing physics and potential applications in reprogrammable memory, logic, and magnonics. Integration of artificial spin ice with functional magnonics is a relatively recent research direction, with a host of promising results. As the field progresses, direct in-depth comparisons of distinct artificial spin systems are crucial to advancing the field. While studies have investigated the effects of different lattice geometries, little comparison exists between systems comprising continuously connected nanostructures, where spin-waves propagate dipole-exchange interaction, and systems with nanobars disconnected at vertices, where spin-wave propagation occurs stray dipolar field. Gaining understanding of how these very different coupling methods affect both spin-wave dynamics and magnetic reversal is key for the field to progress and provides crucial system-design information including for future systems containing combinations of connected and disconnected elements. Here, we study the magnonic response of two kagome spin ices Brillouin light scattering, a continuously connected system and a disconnected system with vertex gaps. We observe distinct high-frequency dynamics and magnetization reversal regimes between the systems, with key distinctions in spin-wave localization and mode quantization, microstate trajectory during reversal and internal field profiles. These observations are pertinent for the fundamental understanding of artificial spin systems and broader design and engineering of reconfigurable functional magnonic crystals.
由于其引人入胜的物理特性以及在可重新编程存储器、逻辑和磁子学方面的潜在应用,人工自旋冰系统已引发了人们越来越浓厚的兴趣。将人工自旋冰与功能性磁子学相结合是一个相对较新的研究方向,已取得了一系列有前景的成果。随着该领域的发展,对不同人工自旋系统进行直接深入的比较对于推动该领域的进步至关重要。虽然已有研究探讨了不同晶格几何结构的影响,但对于由连续连接的纳米结构组成的系统(自旋波通过偶极交换相互作用传播)和顶点处纳米棒断开连接的系统(自旋波通过杂散偶极场传播)之间的比较却很少。了解这些截然不同的耦合方法如何影响自旋波动力学和磁反转,是该领域取得进展的关键,并能提供关键的系统设计信息,包括为未来包含连接和断开元件组合的系统提供信息。在此,我们通过布里渊光散射研究了两种 Kagome 自旋冰的磁子响应,一种是连续连接的系统,另一种是具有顶点间隙的断开连接的系统。我们观察到这两个系统之间存在明显的高频动力学和磁化反转机制,在自旋波局域化和模式量子化、反转过程中的微观状态轨迹以及内场分布方面存在关键差异。这些观察结果对于深入理解人工自旋系统以及更广泛地设计和工程化可重构功能性磁子晶体具有重要意义。