de Rojas Julius, Atkinson Del, Adeyeye Adekunle O
Department of Physics, Durham University, Durham DH1 3LE, United Kingdom.
Department of Physics, Oklahoma State University, Stillwater, OK 74078, United States of America.
J Phys Condens Matter. 2024 Jul 18;36(41). doi: 10.1088/1361-648X/ad5d3f.
In this work high-frequency magnetization dynamics and statics of artificial spin-ice lattices with different geometric nanostructure array configurations are studied where the individual nanostructures are composed of ferromagnetic/non-magnetic/ferromagnetic trilayers with different non-magnetic thicknesses. These thickness variations enable additional control over the magnetic interactions within the spin-ice lattice that directly impacts the resulting magnetization dynamics and the associated magnonic modes. Specifically the geometric arrangements studied are square, kagome and trigonal spin ice configurations, where the individual lithographically patterned nanomagnets (NMs) are trilayers, made up of two magnetic layers ofNi81Fe19of 30 nm and 70 nm thickness respectively, separated by a non-magnetic copper layer of either 2 nm or 40 nm. We show that coupling via the magnetostatic interactions between the ferromagnetic layers of the NMs within square, kagome and trigonal spin-ice lattices offers fine-control over magnetization states and magnetic resonant modes. In particular, the kagome and trigonal lattices allow tuning of an additional mode and the spacing between multiple resonance modes, increasing functionality beyond square lattices. These results demonstrate the ability to move beyond quasi-2D single magnetic layer nanomagnetics via control of the vertical interlayer interactions in spin ice arrays. This additional control enables multi-mode magnonic programmability of the resonance spectra, which has potential for magnetic metamaterials for microwave or information processing applications.
在这项工作中,我们研究了具有不同几何纳米结构阵列配置的人工自旋冰晶格的高频磁化动力学和静力学,其中单个纳米结构由具有不同非磁性厚度的铁磁/非磁性/铁磁三层组成。这些厚度变化能够对自旋冰晶格内的磁相互作用进行额外控制,这直接影响了由此产生的磁化动力学和相关的磁振子模式。具体而言,所研究的几何排列为方形、 Kagome 和三角形自旋冰配置,其中通过光刻图案化的单个纳米磁体(NMs)是三层结构,由分别为30nm和70nm厚度的两个Ni81Fe19磁性层组成,中间隔着2nm或40nm的非磁性铜层。我们表明,方形、Kagome和三角形自旋冰晶格内纳米磁体的铁磁层之间通过静磁相互作用的耦合,能够对磁化状态和磁共振模式进行精细控制。特别是,Kagome和三角形晶格允许调节额外的模式以及多个共振模式之间的间距,从而增加了超越方形晶格的功能。这些结果表明,通过控制自旋冰阵列中的垂直层间相互作用,可以超越准二维单磁层纳米磁性材料。这种额外控制实现了共振光谱的多模式磁振子可编程性,这对于微波或信息处理应用的磁性超材料具有潜在意义。