Suppr超能文献

钠钾ATP酶失调驱动重症新型冠状病毒肺炎肺泡上皮屏障功能障碍的分子机制

Molecular mechanisms of Na,K-ATPase dysregulation driving alveolar epithelial barrier failure in severe COVID-19.

作者信息

Kryvenko Vitalii, Vadász István

机构信息

Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.

The Cardio-Pulmonary Institute (CPI), Giessen, Germany.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2021 Jun 1;320(6):L1186-L1193. doi: 10.1152/ajplung.00056.2021. Epub 2021 Mar 9.

Abstract

A significant number of patients with coronavirus disease 2019 (COVID-19) develop acute respiratory distress syndrome (ARDS) that is associated with a poor outcome. The molecular mechanisms driving failure of the alveolar barrier upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remain incompletely understood. The Na,K-ATPase is an adhesion molecule and a plasma membrane transporter that is critically required for proper alveolar epithelial function by both promoting barrier integrity and resolution of excess alveolar fluid, thus enabling appropriate gas exchange. However, numerous SARS-CoV-2-mediated and COVID-19-related signals directly or indirectly impair the function of the Na,K-ATPase, thereby potentially contributing to disease progression. In this Perspective, we highlight some of the putative mechanisms of SARS-CoV-2-driven dysfunction of the Na,K-ATPase, focusing on expression, maturation, and trafficking of the transporter. A therapeutic mean to selectively inhibit the maladaptive signals that impair the Na,K-ATPase upon SARS-CoV-2 infection might be effective in reestablishing the alveolar epithelial barrier and promoting alveolar fluid clearance and thus advantageous in patients with COVID-19-associated ARDS.

摘要

相当数量的2019冠状病毒病(COVID-19)患者会发展为急性呼吸窘迫综合征(ARDS),且预后较差。严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染导致肺泡屏障功能衰竭的分子机制仍未完全明确。钠钾ATP酶是一种黏附分子和质膜转运蛋白,通过促进屏障完整性和清除过多肺泡液,对维持正常的肺泡上皮功能至关重要,从而实现适当的气体交换。然而,众多SARS-CoV-2介导的以及与COVID-19相关的信号直接或间接损害钠钾ATP酶的功能,进而可能推动疾病进展。在本观点文章中,我们重点介绍了一些SARS-CoV-2导致钠钾ATP酶功能障碍的可能机制,着重关注该转运蛋白的表达、成熟和运输过程。一种选择性抑制SARS-CoV-2感染时损害钠钾ATP酶的适应不良信号的治疗方法,可能有助于重建肺泡上皮屏障、促进肺泡液清除,从而对患有COVID-19相关ARDS的患者有益。

相似文献

5
Alveolar epithelium and Na,K-ATPase in acute lung injury.急性肺损伤中的肺泡上皮与钠钾ATP酶
Intensive Care Med. 2007 Jul;33(7):1243-1251. doi: 10.1007/s00134-007-0661-8. Epub 2007 May 25.
6
Hypoxic inhibition of alveolar fluid reabsorption.缺氧对肺泡液体重吸收的抑制作用。
Adv Exp Med Biol. 2007;618:159-68. doi: 10.1007/978-0-387-75434-5_12.
7
Invited review: lung edema clearance: role of Na(+)-K(+)-ATPase.特邀综述:肺水肿清除:钠钾ATP酶的作用
J Appl Physiol (1985). 2002 Nov;93(5):1860-6. doi: 10.1152/japplphysiol.00022.2002.

引用本文的文献

1
The role of Na,K‑ATPase in lung diseases (Review).钠钾ATP酶在肺部疾病中的作用(综述)
Mol Med Rep. 2025 Nov;32(5). doi: 10.3892/mmr.2025.13665. Epub 2025 Aug 29.
5
Na/K-ATPase: More than an Electrogenic Pump.钠钾 ATP 酶:不仅仅是一种生电性泵。
Int J Mol Sci. 2024 Jun 1;25(11):6122. doi: 10.3390/ijms25116122.

本文引用的文献

3
SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport.SARS-CoV-2 可能劫持 GPCR 信号通路,使肺离子和液体转运失调。
Am J Physiol Lung Cell Mol Physiol. 2021 Mar 1;320(3):L430-L435. doi: 10.1152/ajplung.00499.2020. Epub 2021 Jan 12.
6
Immunoglobulin deficiency as an indicator of disease severity in patients with COVID-19.免疫球蛋白缺陷可作为 COVID-19 患者疾病严重程度的指标。
Am J Physiol Lung Cell Mol Physiol. 2021 Apr 1;320(4):L590-L599. doi: 10.1152/ajplung.00359.2020. Epub 2020 Nov 25.
8
Severe organising pneumonia following COVID-19.COVID-19 后机化性肺炎。
Thorax. 2021 Feb;76(2):201-204. doi: 10.1136/thoraxjnl-2020-216088. Epub 2020 Nov 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验