文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

关于中国 COVID-19 的谣言反驳讨论中的回音室效应:社交媒体内容和网络分析研究。

Echo Chamber Effect in Rumor Rebuttal Discussions About COVID-19 in China: Social Media Content and Network Analysis Study.

机构信息

School of Information Management, Wuhan University, Wuhan, China.

Center for Studies of Information Resources, Wuhan University, Wuhan, China.

出版信息

J Med Internet Res. 2021 Mar 25;23(3):e27009. doi: 10.2196/27009.


DOI:10.2196/27009
PMID:33690145
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7996199/
Abstract

BACKGROUND: The dissemination of rumor rebuttal content on social media is vital for rumor control and disease containment during public health crises. Previous research on the effectiveness of rumor rebuttal, to a certain extent, ignored or simplified the structure of dissemination networks and users' cognition as well as decision-making and interaction behaviors. OBJECTIVE: This study aimed to roughly evaluate the effectiveness of rumor rebuttal; dig deeply into the attitude-based echo chamber effect on users' responses to rumor rebuttal under multiple topics on Weibo, a Chinese social media platform, in the early stage of the COVID-19 epidemic; and evaluate the echo chamber's impact on the information characteristics of user interaction content. METHODS: We used Sina Weibo's application programming interface to crawl rumor rebuttal content related to COVID-19 from 10 AM on January 23, 2020, to midnight on April 8, 2020. Using content analysis, sentiment analysis, social network analysis, and statistical analysis, we first analyzed whether and to what extent there was an echo chamber effect on the shaping of individuals' attitudes when retweeting or commenting on others' tweets. Then, we tested the heterogeneity of attitude distribution within communities and the homophily of interactions between communities. Based on the results at user and community levels, we made comprehensive judgments. Finally, we examined users' interaction content from three dimensions-sentiment expression, information seeking and sharing, and civility-to test the impact of the echo chamber effect. RESULTS: Our results indicated that the retweeting mechanism played an essential role in promoting polarization, and the commenting mechanism played a role in consensus building. Our results showed that there might not be a significant echo chamber effect on community interactions and verified that, compared to like-minded interactions, cross-cutting interactions contained significantly more negative sentiment, information seeking and sharing, and incivility. We found that online users' information-seeking behavior was accompanied by incivility, and information-sharing behavior was accompanied by more negative sentiment, which was often accompanied by incivility. CONCLUSIONS: Our findings revealed the existence and degree of an echo chamber effect from multiple dimensions, such as topic, interaction mechanism, and interaction level, and its impact on interaction content. Based on these findings, we provide several suggestions for preventing or alleviating group polarization to achieve better rumor rebuttal.

摘要

背景:在公共卫生危机期间,社交媒体上谣言驳斥内容的传播对于谣言控制和疾病遏制至关重要。之前关于谣言驳斥效果的研究,在一定程度上忽略或简化了传播网络的结构以及用户的认知、决策和互动行为。

目的:本研究旨在粗略评估谣言驳斥的效果;深入挖掘在微博(中国社交媒体平台)上 COVID-19 疫情早期针对多个主题的谣言驳斥下,基于态度的回音壁效应对用户回应的影响;并评估回音壁对用户互动内容信息特征的影响。

方法:我们使用新浪微博的应用程序接口,从 2020 年 1 月 23 日上午 10 点到 2020 年 4 月 8 日午夜,抓取与 COVID-19 相关的谣言驳斥内容。使用内容分析、情感分析、社会网络分析和统计分析,我们首先分析在转发或评论他人推文时,基于态度的回音壁效应对个人态度形成的影响,以及在多大程度上产生影响。然后,我们测试了社区内态度分布的异质性以及社区间互动的同质性。基于用户和社区层面的结果,我们做出了全面的判断。最后,我们从情感表达、信息寻求与分享以及文明性三个维度检验用户的互动内容,以检验回音壁效应的影响。

结果:我们的结果表明,转发机制在促进极化方面发挥了重要作用,而评论机制则在达成共识方面发挥了作用。我们的结果表明,社区互动中可能没有显著的回音壁效应,并且验证了与志同道合的互动相比,交叉互动包含了更多的负面情绪、信息寻求与分享以及不文明行为。我们发现,在线用户的信息寻求行为伴随着不文明行为,而信息分享行为伴随着更多的负面情绪,且往往伴随着不文明行为。

结论:我们的研究结果揭示了从多个维度(如主题、互动机制和互动层面)存在和程度的回音壁效应,及其对互动内容的影响。基于这些发现,我们为防止或减轻群体极化以实现更好的谣言驳斥提供了几点建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/20ec012e07a5/jmir_v23i3e27009_fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/d8090d274800/jmir_v23i3e27009_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/3192e40cfb25/jmir_v23i3e27009_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/64bace3a5135/jmir_v23i3e27009_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/f973d7acf9bb/jmir_v23i3e27009_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/82687e940428/jmir_v23i3e27009_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/5be2836b7a67/jmir_v23i3e27009_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/35f143ba4fd4/jmir_v23i3e27009_fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/aa2f696fd1d1/jmir_v23i3e27009_fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/5a58f552ff7d/jmir_v23i3e27009_fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/67a180168a99/jmir_v23i3e27009_fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/9e46fdf7650b/jmir_v23i3e27009_fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/3e04d56e0918/jmir_v23i3e27009_fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/20ec012e07a5/jmir_v23i3e27009_fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/d8090d274800/jmir_v23i3e27009_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/3192e40cfb25/jmir_v23i3e27009_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/64bace3a5135/jmir_v23i3e27009_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/f973d7acf9bb/jmir_v23i3e27009_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/82687e940428/jmir_v23i3e27009_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/5be2836b7a67/jmir_v23i3e27009_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/35f143ba4fd4/jmir_v23i3e27009_fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/aa2f696fd1d1/jmir_v23i3e27009_fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/5a58f552ff7d/jmir_v23i3e27009_fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/67a180168a99/jmir_v23i3e27009_fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/9e46fdf7650b/jmir_v23i3e27009_fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/3e04d56e0918/jmir_v23i3e27009_fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3053/7996199/20ec012e07a5/jmir_v23i3e27009_fig13.jpg

相似文献

[1]
Echo Chamber Effect in Rumor Rebuttal Discussions About COVID-19 in China: Social Media Content and Network Analysis Study.

J Med Internet Res. 2021-3-25

[2]
The echo chamber effect of rumor rebuttal behavior of users in the early stage of COVID-19 epidemic in China.

Comput Human Behav. 2022-3

[3]
Opinion Leaders and Structural Hole Spanners Influencing Echo Chambers in Discussions About COVID-19 Vaccines on Social Media in China: Network Analysis.

J Med Internet Res. 2022-11-18

[4]
Concerns Expressed by Chinese Social Media Users During the COVID-19 Pandemic: Content Analysis of Sina Weibo Microblogging Data.

J Med Internet Res. 2020-11-26

[5]
The impact factors of social media users' forwarding behavior of COVID-19 vaccine topic: Based on empirical analysis of Chinese Weibo users.

Front Public Health. 2022

[6]
Difference in Rumor Dissemination and Debunking Before and After the Relaxation of COVID-19 Prevention and Control Measures in China: Infodemiology Study.

J Med Internet Res. 2024-5-15

[7]
Characterizing Weibo Social Media Posts From Wuhan, China During the Early Stages of the COVID-19 Pandemic: Qualitative Content Analysis.

JMIR Public Health Surveill. 2020-12-7

[8]
Dissemination and Refutation of Rumors During the COVID-19 Outbreak in China: Infodemiology Study.

J Med Internet Res. 2021-2-15

[9]
Sentiment Analysis of Texts on Public Health Emergencies Based on Social Media Data Mining.

Comput Math Methods Med. 2022

[10]
Public Discourse and Sentiment Toward Dementia on Chinese Social Media: Machine Learning Analysis of Weibo Posts.

J Med Internet Res. 2022-9-2

引用本文的文献

[1]
Leveraging Promotional Strategies to Enhance Hospital Influence on Social Media: Cross-Sectional Study.

J Med Internet Res. 2025-8-22

[2]
Behavioural interventions to reduce vaccine hesitancy driven by misinformation on social media.

BMJ. 2024-1-16

[3]
Exploring rumor behavior during the COVID-19 pandemic through an information processing perspective: The moderating role of critical thinking.

Comput Human Behav. 2023-10

[4]
Does Social Media Users' Interaction Influence the Formation of Echo Chambers? Social Network Analysis Based on Vaccine Video Comments on YouTube.

Int J Environ Res Public Health. 2022-11-29

[5]
Opinion Leaders and Structural Hole Spanners Influencing Echo Chambers in Discussions About COVID-19 Vaccines on Social Media in China: Network Analysis.

J Med Internet Res. 2022-11-18

[6]
COVID-19: The Pseudo-Environment and the Need for a Paradigm Change.

Germs. 2021-12-29

[7]
Factors influencing fake news rebuttal acceptance during the COVID-19 pandemic and the moderating effect of cognitive ability.

Comput Human Behav. 2022-5

[8]
The Influence of the Debunker's Identity and Emotional Expression on the Sharing Behavior of Debunking Information.

Front Psychol. 2021-12-6

本文引用的文献

[1]
Public Emotions and Rumors Spread During the COVID-19 Epidemic in China: Web-Based Correlation Study.

J Med Internet Res. 2020-11-25

[2]
An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China.

Science. 2020-3-31

[3]
Blocking information on COVID-19 can fuel the spread of misinformation.

Nature. 2020-4

[4]
COVID-19: fighting panic with information.

Lancet. 2020-2-22

[5]
Defining the Epidemiology of Covid-19 - Studies Needed.

N Engl J Med. 2020-3-26

[6]
A novel coronavirus outbreak of global health concern.

Lancet. 2020-2-15

[7]
A model and simulation of the emotional contagion of netizens in the process of rumor refutation.

Sci Rep. 2019-10-2

[8]
Debunking in a world of tribes.

PLoS One. 2017-7-24

[9]
Tweeting Supertyphoon Haiyan: Evolving Functions of Twitter during and after a Disaster Event.

PLoS One. 2016-3-28

[10]
Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads.

PLoS One. 2016-3-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索