Department of Biology, University of Fribourg, Fribourg, Switzerland.
Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
PLoS Genet. 2021 Mar 9;17(3):e1009414. doi: 10.1371/journal.pgen.1009414. eCollection 2021 Mar.
Indole-3-acetic acid (IAA) is the most common, naturally occurring phytohormone that regulates cell division, differentiation, and senescence in plants. The capacity to synthesize IAA is also widespread among plant-associated bacterial and fungal species, which may use IAA as an effector molecule to define their relationships with plants or to coordinate their physiological behavior through cell-cell communication. Fungi, including many species that do not entertain a plant-associated life style, are also able to synthesize IAA, but the physiological role of IAA in these fungi has largely remained enigmatic. Interestingly, in this context, growth of the budding yeast Saccharomyces cerevisiae is sensitive to extracellular IAA. Here, we use a combination of various genetic approaches including chemical-genetic profiling, SAturated Transposon Analysis in Yeast (SATAY), and genetic epistasis analyses to identify the mode-of-action by which IAA inhibits growth in yeast. Surprisingly, these analyses pinpointed the target of rapamycin complex 1 (TORC1), a central regulator of eukaryotic cell growth, as the major growth-limiting target of IAA. Our biochemical analyses further demonstrate that IAA inhibits TORC1 both in vivo and in vitro. Intriguingly, we also show that yeast cells are able to synthesize IAA and specifically accumulate IAA upon entry into stationary phase. Our data therefore suggest that IAA contributes to proper entry of yeast cells into a quiescent state by acting as a metabolic inhibitor of TORC1.
吲哚乙酸(IAA)是最常见的天然植物激素,调节植物细胞的分裂、分化和衰老。合成 IAA 的能力在植物相关的细菌和真菌物种中也很普遍,它们可能将 IAA 用作效应分子来定义它们与植物的关系,或通过细胞间通讯来协调它们的生理行为。真菌,包括许多不具有植物相关生活方式的物种,也能够合成 IAA,但 IAA 在这些真菌中的生理作用在很大程度上仍然是个谜。有趣的是,在这种情况下,出芽酵母酿酒酵母的生长对细胞外 IAA 敏感。在这里,我们使用各种遗传方法的组合,包括化学遗传作图、酵母饱和转座子分析(SATAY)和遗传上位性分析,来确定 IAA 抑制酵母生长的作用模式。令人惊讶的是,这些分析指出了雷帕霉素复合物 1(TORC1),真核细胞生长的中央调节剂,是 IAA 主要的生长限制靶标。我们的生化分析进一步表明,IAA 在体内和体外都能抑制 TORC1。有趣的是,我们还表明,酵母细胞能够合成 IAA,并在进入静止期时特异性积累 IAA。因此,我们的数据表明,IAA 通过作为 TORC1 的代谢抑制剂,有助于酵母细胞正确进入静止状态。