Huisman Sjoerd M H, Mahfouz Ahmed, Batmanghelich Nematollah K, Lelieveldt Boudewijn P F, Reinders Marcel J T
Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.
Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands.
Brain Inform. 2018 Nov 2;5(2):13. doi: 10.1186/s40708-018-0091-0.
Imaging genetics deals with relationships between genetic variation and imaging variables, often in a disease context. The complex relationships between brain volumes and genetic variants have been explored with both dimension reduction methods and model-based approaches. However, these models usually do not make use of the extensive knowledge of the spatio-anatomical patterns of gene activity. We present a method for integrating genetic markers (single nucleotide polymorphisms) and imaging features, which is based on a causal model and, at the same time, uses the power of dimension reduction. We use structural equation models to find latent variables that explain brain volume changes in a disease context, and which are in turn affected by genetic variants. We make use of publicly available spatial transcriptome data from the Allen Human Brain Atlas to specify the model structure, which reduces noise and improves interpretability. The model is tested in a simulation setting and applied on a case study of the Alzheimer's Disease Neuroimaging Initiative.
影像遗传学研究基因变异与影像变量之间的关系,通常是在疾病背景下进行。人们已经运用降维方法和基于模型的方法探索了脑容量与基因变异之间的复杂关系。然而,这些模型通常没有利用基因活动的空间解剖模式的广泛知识。我们提出了一种整合遗传标记(单核苷酸多态性)和影像特征的方法,该方法基于因果模型,同时利用了降维的能力。我们使用结构方程模型来寻找潜在变量,这些潜在变量可以解释疾病背景下的脑容量变化,并且反过来又受到基因变异的影响。我们利用来自艾伦人类脑图谱的公开可用空间转录组数据来指定模型结构,这减少了噪声并提高了可解释性。该模型在模拟环境中进行了测试,并应用于阿尔茨海默病神经影像倡议的一个案例研究。