Suppr超能文献

考虑吸烟暴露随时间变化的 COPD 风险预测。

Prediction of COPD risk accounting for time-varying smoking exposures.

机构信息

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America.

Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington D.C., DC, United States of America.

出版信息

PLoS One. 2021 Mar 10;16(3):e0248535. doi: 10.1371/journal.pone.0248535. eCollection 2021.

Abstract

RATIONALE

Chronic Obstructive Pulmonary Disease (COPD) is the fourth leading cause of death in the United States. Studies have primarily assessed the relationship between smoking on COPD risk focusing on summary measures, like smoking status.

OBJECTIVE

Develop a COPD risk prediction model incorporating individual time-varying smoking exposures.

METHODS

The Nurses' Health Study (N = 86,711) and the Health Professionals Follow-up Study (N = 39,817) data was used to develop a COPD risk prediction model. Data was randomly split in 50-50 samples for model building and validation. Cox regression with time-varying covariates was used to assess the association between smoking duration, intensity and year-since-quit and self-reported COPD diagnosis incidence. We evaluated the model calibration as well as discriminatory accuracy via the Area Under the receiver operating characteristic Curve (AUC). We computed 6-year risk of COPD incidence given various individual smoking scenarios.

RESULTS

Smoking duration, year-since-quit (if former smokers), sex, and interaction of sex and smoking duration are significantly associated with the incidence of diagnosed COPD. The model that incorporated time-varying smoking variables yielded higher AUCs compared to models using only pack-years. The AUCs for the model were 0.80 (95% CI: 0.74-0.86) and 0.73 (95% CI: 0.70-0.77) for males and females, respectively.

CONCLUSIONS

Utilizing detailed smoking pattern information, the model predicts COPD risk with better accuracy than models based on only smoking summary measures. It might serve as a tool for early detection programs by identifying individuals at high-risk for COPD.

摘要

背景

慢性阻塞性肺疾病(COPD)是美国第四大致死原因。研究主要评估了吸烟与 COPD 风险之间的关系,重点关注吸烟状况等综合指标。

目的

开发一种包含个体时变吸烟暴露的 COPD 风险预测模型。

方法

利用护士健康研究(N = 86711)和健康专业人员随访研究(N = 39817)的数据,开发 COPD 风险预测模型。数据随机分为 50-50 样本进行模型构建和验证。使用时变协变量的 Cox 回归评估吸烟持续时间、强度和戒烟年限与自我报告的 COPD 诊断发病率之间的关联。我们通过接受者操作特征曲线(ROC)下的面积(AUC)评估模型校准和区分准确性。我们计算了在各种个体吸烟情况下,给定 COPD 发生率的 6 年风险。

结果

吸烟持续时间、戒烟年限(如果是前吸烟者)、性别以及性别和吸烟持续时间的相互作用与诊断为 COPD 的发病率显著相关。纳入时变吸烟变量的模型比仅使用包年数的模型产生更高的 AUC。该模型在男性和女性中的 AUC 分别为 0.80(95%CI:0.74-0.86)和 0.73(95%CI:0.70-0.77)。

结论

利用详细的吸烟模式信息,该模型预测 COPD 风险的准确性优于仅基于吸烟综合指标的模型。它可以通过识别 COPD 高风险个体作为早期检测计划的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1b/7946316/b08f687be098/pone.0248535.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验