Suppr超能文献

基于马铃薯关联群体的代谢物相关网络中相关系数阈值设定准则示例

Guidelines for correlation coefficient threshold settings in metabolite correlation networks exemplified on a potato association panel.

机构信息

Departamento de Ciencias - Química, Centro de Espectroscopia de Resonancia Magnética Nuclear (CERMN), Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Lima, Peru.

出版信息

BMC Bioinformatics. 2021 Mar 10;22(1):116. doi: 10.1186/s12859-021-03994-z.

Abstract

BACKGROUND

Correlation network analysis has become an integral tool to study metabolite datasets. Networks are constructed by omitting correlations between metabolites based on two thresholds-namely the r and the associated p-values. While p-value threshold settings follow the rules of multiple hypotheses testing correction, guidelines for r-value threshold settings have not been defined.

RESULTS

Here, we introduce a method that allows determining the r-value threshold based on an iterative approach, where different networks are constructed and their network topology is monitored. Once the network topology changes significantly, the threshold is set to the corresponding correlation coefficient value. The approach was exemplified on: (i) a metabolite and morphological trait dataset from a potato association panel, which was grown under normal irrigation and water recovery conditions; and validated (ii) on a metabolite dataset of hearts of fed and fasted mice. For the potato normal irrigation correlation network a threshold of Pearson's |r|≥ 0.23 was suggested, while for the water recovery correlation network a threshold of Pearson's |r|≥ 0.41 was estimated. For both mice networks the threshold was calculated with Pearson's |r|≥ 0.84.

CONCLUSIONS

Our analysis corrected the previously stated Pearson's correlation coefficient threshold from 0.4 to 0.41 in the water recovery network and from 0.4 to 0.23 for the normal irrigation network. Furthermore, the proposed method suggested a correlation threshold of 0.84 for both mice networks rather than a threshold of 0.7 as applied earlier. We demonstrate that the proposed approach is a valuable tool for constructing biological meaningful networks.

摘要

背景

相关网络分析已成为研究代谢物数据集的重要工具。网络是通过基于两个阈值(即 r 值和相关的 p 值)省略代谢物之间的相关性来构建的。虽然 p 值阈值设置遵循多重假设检验校正规则,但 r 值阈值设置的指南尚未定义。

结果

在这里,我们介绍了一种方法,该方法允许基于迭代方法确定 r 值阈值,其中构建不同的网络并监测其网络拓扑结构。一旦网络拓扑结构发生显著变化,就将阈值设置为相应的相关系数值。该方法在以下方面进行了举例说明:(i)在正常灌溉和水回收条件下生长的马铃薯关联群体的代谢物和形态特征数据集;并进行了验证(ii)在 fed 和 fasted 小鼠的代谢物数据集上。对于马铃薯正常灌溉相关网络,建议使用 Pearson's |r|≥0.23 的阈值,而对于水回收相关网络,建议使用 Pearson's |r|≥0.41 的阈值。对于这两个小鼠网络,使用 Pearson's |r|≥0.84 计算阈值。

结论

我们的分析将之前在水回收网络中从 0.4 到 0.41 和在正常灌溉网络中从 0.4 到 0.23 提出的 Pearson 相关系数阈值进行了校正。此外,所提出的方法建议两个小鼠网络的相关阈值为 0.84,而不是之前应用的 0.7 阈值。我们证明了所提出的方法是构建有意义的生物学网络的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74b7/7945624/a3ebf5e7c4a1/12859_2021_3994_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验