Suppr超能文献

近端高光谱成像检测玉米生理的昼夜变化和干旱诱导变化。

Proximal Hyperspectral Imaging Detects Diurnal and Drought-Induced Changes in Maize Physiology.

作者信息

Mertens Stien, Verbraeken Lennart, Sprenger Heike, Demuynck Kirin, Maleux Katrien, Cannoot Bernard, De Block Jolien, Maere Steven, Nelissen Hilde, Bonaventure Gustavo, Crafts-Brandner Steven J, Vogel Jonathan T, Bruce Wesley, Inzé Dirk, Wuyts Nathalie

机构信息

Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.

VIB-UGent Center for Plant Systems Biology, Ghent, Belgium.

出版信息

Front Plant Sci. 2021 Feb 22;12:640914. doi: 10.3389/fpls.2021.640914. eCollection 2021.

Abstract

Hyperspectral imaging is a promising tool for non-destructive phenotyping of plant physiological traits, which has been transferred from remote to proximal sensing applications, and from manual laboratory setups to automated plant phenotyping platforms. Due to the higher resolution in proximal sensing, illumination variation and plant geometry result in increased non-biological variation in plant spectra that may mask subtle biological differences. Here, a better understanding of spectral measurements for proximal sensing and their application to study drought, developmental and diurnal responses was acquired in a drought case study of maize grown in a greenhouse phenotyping platform with a hyperspectral imaging setup. The use of brightness classification to reduce the illumination-induced non-biological variation is demonstrated, and allowed the detection of diurnal, developmental and early drought-induced changes in maize reflectance and physiology. Diurnal changes in transpiration rate and vapor pressure deficit were significantly correlated with red and red-edge reflectance. Drought-induced changes in effective quantum yield and water potential were accurately predicted using partial least squares regression and the newly developed Water Potential Index 2, respectively. The prediction accuracy of hyperspectral indices and partial least squares regression were similar, as long as a strong relationship between the physiological trait and reflectance was present. This demonstrates that current hyperspectral processing approaches can be used in automated plant phenotyping platforms to monitor physiological traits with a high temporal resolution.

摘要

高光谱成像技术是一种用于植物生理性状无损表型分析的有前景的工具,它已从遥感应用转向近地遥感应用,并从手动实验室设置发展到自动化植物表型分析平台。由于近地遥感具有更高的分辨率,光照变化和植物几何形状导致植物光谱中非生物变异增加,这可能掩盖细微的生物差异。在此,通过在温室表型分析平台上使用高光谱成像装置对玉米进行干旱案例研究,我们对近地遥感的光谱测量及其在研究干旱、发育和昼夜响应方面的应用有了更好的理解。本文展示了使用亮度分类来减少光照引起的非生物变异,并能够检测玉米反射率和生理特征的昼夜、发育和早期干旱诱导变化。蒸腾速率和水汽压差的昼夜变化与红光和红边反射率显著相关。分别使用偏最小二乘回归和新开发的水势指数2准确预测了干旱诱导的有效量子产率和水势变化。只要生理特征与反射率之间存在强关系,高光谱指数和偏最小二乘回归的预测精度相似。这表明当前的高光谱处理方法可用于自动化植物表型分析平台,以高时间分辨率监测生理特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e66e/7937976/3711dfa9e8ed/fpls-12-640914-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验