Suppr超能文献

分散但全球协调的生物多样性数据

Decentralized but Globally Coordinated Biodiversity Data.

作者信息

Sterner Beckett W, Gilbert Edward E, Franz Nico M

机构信息

School of Life Sciences, Arizona State University, Tempe, AZ, United States.

出版信息

Front Big Data. 2020 Oct 23;3:519133. doi: 10.3389/fdata.2020.519133. eCollection 2020.

Abstract

Centralized biodiversity data aggregation is too often failing societal needs due to pervasive and systemic data quality deficiencies. We argue for a novel approach that embodies the spirit of the Web ("small pieces loosely joined") through the decentralized coordination of data across scientific languages and communities. The upfront cost of decentralization can be offset by the long-term benefit of achieving sustained expert engagement, higher-quality data products, and ultimately more societal impact for biodiversity data. Our decentralized approach encourages the emergence and evolution of multiple self-identifying communities of practice that are regionally, taxonomically, or institutionally localized. Each community is empowered to control the social and informational design and versioning of their local data infrastructures and signals. With no single aggregator to exert centralized control over biodiversity data, decentralization generates loosely connected networks of mid-level aggregators. Global coordination is nevertheless feasible through automatable data sharing agreements that enable efficient propagation and translation of biodiversity data across communities. The decentralized model also poses novel integration challenges, among which the explicit and continuous articulation of conflicting systematic classifications and phylogenies remain the most challenging. We discuss the development of available solutions, challenges, and outline next steps: the global effort of coordination should focus on developing shared languages for data signal translation, as opposed to homogenizing the data signal itself.

摘要

由于普遍存在的系统性数据质量缺陷,集中式生物多样性数据聚合常常无法满足社会需求。我们主张采用一种新颖的方法,通过跨科学语言和社区的数据分散协调,体现网络精神(“松散连接的小部件”)。分散化的前期成本可以通过实现持续专家参与、更高质量的数据产品以及最终对生物多样性数据产生更大社会影响的长期收益来抵消。我们的分散式方法鼓励多个自我识别的实践社区的出现和发展,这些社区在区域、分类或机构上具有局限性。每个社区都有权控制其本地数据基础设施和信号的社会和信息设计以及版本。由于没有单一的聚合器对生物多样性数据进行集中控制,分散化产生了由中级聚合器组成的松散连接网络。然而,通过可自动化的数据共享协议实现全球协调是可行的,这些协议能够在各社区之间高效传播和转换生物多样性数据。分散式模型也带来了新的整合挑战,其中明确和持续地阐明相互冲突的系统分类和系统发育仍然是最具挑战性的。我们讨论了现有解决方案的发展、挑战,并概述了下一步:全球协调努力应侧重于开发用于数据信号转换的共享语言,而不是使数据信号本身同质化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b94/7931950/6098ff140d40/fdata-03-519133-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验