Suppr超能文献

人工智能中的跨学科研究:挑战与机遇

Interdisciplinary Research in Artificial Intelligence: Challenges and Opportunities.

作者信息

Kusters Remy, Misevic Dusan, Berry Hugues, Cully Antoine, Le Cunff Yann, Dandoy Loic, Díaz-Rodríguez Natalia, Ficher Marion, Grizou Jonathan, Othmani Alice, Palpanas Themis, Komorowski Matthieu, Loiseau Patrick, Moulin Frier Clément, Nanini Santino, Quercia Daniele, Sebag Michele, Soulié Fogelman Françoise, Taleb Sofiane, Tupikina Liubov, Sahu Vaibhav, Vie Jill-Jênn, Wehbi Fatima

机构信息

INSERM U1284, Université de Paris, Center for Research and Interdisciplinarity (CRI), Paris, France.

Inria, Villeurbanne, France.

出版信息

Front Big Data. 2020 Nov 23;3:577974. doi: 10.3389/fdata.2020.577974. eCollection 2020.

Abstract

The use of artificial intelligence (AI) in a variety of research fields is speeding up multiple digital revolutions, from shifting paradigms in healthcare, precision medicine and wearable sensing, to public services and education offered to the masses around the world, to future cities made optimally efficient by autonomous driving. When a revolution happens, the consequences are not obvious straight away, and to date, there is no uniformly adapted framework to guide AI research to ensure a sustainable societal transition. To answer this need, here we analyze three key challenges to interdisciplinary AI research, and deliver three broad conclusions: 1) future development of AI should not only impact other scientific domains but should also take inspiration and benefit from other fields of science, 2) AI research must be accompanied by decision explainability, dataset bias transparency as well as development of evaluation methodologies and creation of regulatory agencies to ensure responsibility, and 3) AI education should receive more attention, efforts and innovation from the educational and scientific communities. Our analysis is of interest not only to AI practitioners but also to other researchers and the general public as it offers ways to guide the emerging collaborations and interactions toward the most fruitful outcomes.

摘要

人工智能(AI)在各种研究领域的应用正在加速多重数字革命,从医疗保健、精准医学和可穿戴传感领域的范式转变,到为全球大众提供的公共服务和教育,再到通过自动驾驶实现最优效率的未来城市。当一场革命发生时,其后果不会立刻显现出来,而且迄今为止,还没有一个统一适用的框架来指导人工智能研究,以确保实现可持续的社会转型。为满足这一需求,我们在此分析跨学科人工智能研究面临的三个关键挑战,并得出三个广泛的结论:1)人工智能的未来发展不仅应影响其他科学领域,还应从其他科学领域获得启发并从中受益;2)人工智能研究必须伴随着决策可解释性、数据集偏差透明度,以及评估方法的发展和监管机构的创建,以确保责任落实;3)人工智能教育应得到教育界和科学界更多的关注、努力和创新。我们的分析不仅对人工智能从业者有意义,对其他研究人员和普通公众也有意义,因为它提供了一些方法,可引导新兴的合作与互动朝着最富有成果的方向发展。

相似文献

引用本文的文献

3
Utilizing large language models for gastroenterology research: a conceptual framework.利用大语言模型进行胃肠病学研究:一个概念框架。
Therap Adv Gastroenterol. 2025 Apr 1;18:17562848251328577. doi: 10.1177/17562848251328577. eCollection 2025.

本文引用的文献

3
4
Discovering Physical Concepts with Neural Networks.用神经网络发现物理概念。
Phys Rev Lett. 2020 Jan 10;124(1):010508. doi: 10.1103/PhysRevLett.124.010508.
8
In defense of the black box.为黑匣子辩护。
Science. 2019 Apr 5;364(6435):26-27. doi: 10.1126/science.aax0162.
9
Using neuroscience to develop artificial intelligence.利用神经科学开发人工智能。
Science. 2019 Feb 15;363(6428):692-693. doi: 10.1126/science.aau6595.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验