Suppr超能文献

MixTwice:通过方差混合对肽阵列进行大规模假设检验。

MixTwice: large-scale hypothesis testing for peptide arrays by variance mixing.

作者信息

Zheng Zihao, Mergaert Aisha M, Ong Irene M, Shelef Miriam A, Newton Michael A

机构信息

Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA.

Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.

出版信息

Bioinformatics. 2021 Sep 9;37(17):2637-2643. doi: 10.1093/bioinformatics/btab162.

Abstract

SUMMARY

Peptide microarrays have emerged as a powerful technology in immunoproteomics as they provide a tool to measure the abundance of different antibodies in patient serum samples. The high dimensionality and small sample size of many experiments challenge conventional statistical approaches, including those aiming to control the false discovery rate (FDR). Motivated by limitations in reproducibility and power of current methods, we advance an empirical Bayesian tool that computes local FDR statistics and local false sign rate statistics when provided with data on estimated effects and estimated standard errors from all the measured peptides. As the name suggests, the MixTwice tool involves the estimation of two mixing distributions, one on underlying effects and one on underlying variance parameters. Constrained optimization techniques provide for model fitting of mixing distributions under weak shape constraints (unimodality of the effect distribution). Numerical experiments show that MixTwice can accurately estimate generative parameters and powerfully identify non-null peptides. In a peptide array study of rheumatoid arthritis, MixTwice recovers meaningful peptide markers in one case where the signal is weak, and has strong reproducibility properties in one case where the signal is strong.

AVAILABILITYAND IMPLEMENTATION

MixTwice is available as an R software package https://cran.r-project.org/web/packages/MixTwice/.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

肽微阵列已成为免疫蛋白质组学中的一项强大技术,因为它们提供了一种测量患者血清样本中不同抗体丰度的工具。许多实验的高维度和小样本量对传统统计方法提出了挑战,包括那些旨在控制错误发现率(FDR)的方法。受当前方法在可重复性和功效方面的局限性启发,我们提出了一种经验贝叶斯工具,当提供来自所有测量肽的估计效应和估计标准误差的数据时,该工具可计算局部FDR统计量和局部错误符号率统计量。顾名思义,MixTwice工具涉及估计两个混合分布,一个关于潜在效应,另一个关于潜在方差参数。约束优化技术可在弱形状约束(效应分布的单峰性)下对混合分布进行模型拟合。数值实验表明,MixTwice可以准确估计生成参数并有力地识别非零肽。在一项类风湿性关节炎的肽阵列研究中,MixTwice在信号较弱的一种情况下恢复了有意义的肽标记,并且在信号较强的一种情况下具有很强的可重复性。

可用性和实现方式

MixTwice作为一个R软件包可在https://cran.r-project.org/web/packages/MixTwice/获取。

补充信息

补充数据可在《生物信息学》在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04a8/8428605/086c880eb4b2/btab162f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验