Suppr超能文献

使用模糊字符串匹配实现言语可懂度研究中听众记录的自动评估。

Using fuzzy string matching for automated assessment of listener transcripts in speech intelligibility studies.

机构信息

Max Planck Institute for Psycholinguistics, PO Box 310, 6500 AH, Nijmegen, The Netherlands.

Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.

出版信息

Behav Res Methods. 2021 Oct;53(5):1945-1953. doi: 10.3758/s13428-021-01542-4. Epub 2021 Mar 10.

Abstract

Many studies of speech perception assess the intelligibility of spoken sentence stimuli by means of transcription tasks ('type out what you hear'). The intelligibility of a given stimulus is then often expressed in terms of percentage of words correctly reported from the target sentence. Yet scoring the participants' raw responses for words correctly identified from the target sentence is a time-consuming task, and hence resource-intensive. Moreover, there is no consensus among speech scientists about what specific protocol to use for the human scoring, limiting the reliability of human scores. The present paper evaluates various forms of fuzzy string matching between participants' responses and target sentences, as automated metrics of listener transcript accuracy. We demonstrate that one particular metric, the token sort ratio, is a consistent, highly efficient, and accurate metric for automated assessment of listener transcripts, as evidenced by high correlations with human-generated scores (best correlation: r = 0.940) and a strong relationship to acoustic markers of speech intelligibility. Thus, fuzzy string matching provides a practical tool for assessment of listener transcript accuracy in large-scale speech intelligibility studies. See https://tokensortratio.netlify.app for an online implementation.

摘要

许多语音感知研究通过转录任务(“写出你听到的内容”)来评估口语句子刺激的可理解度。然后,给定刺激的可理解度通常用正确报告的目标句子中的单词百分比来表示。然而,对参与者从目标句子中正确识别的单词的原始反应进行评分是一项耗时的任务,因此资源密集型。此外,语音科学家之间对于人类评分使用何种特定协议并没有达成共识,这限制了人类评分的可靠性。本文评估了参与者反应与目标句子之间的各种模糊字符串匹配形式,作为听众转录准确性的自动度量标准。我们证明了一种特定的度量标准,即令牌排序比,是一种用于自动评估听众转录的一致、高效且准确的度量标准,这一点通过与人工生成的分数高度相关(最佳相关性:r=0.940)以及与语音可理解性的声学标记的强烈关系得到了证明。因此,模糊字符串匹配为大规模语音可理解性研究中的听众转录准确性评估提供了实用工具。有关在线实现,请访问 https://tokensortratio.netlify.app。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验