Herrmann Björn
Rotman Research Institute, Baycrest Academy for Research and Education, North York, Ontario, Canada.
Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
Trends Hear. 2025 Jan-Dec;29:23312165251347131. doi: 10.1177/23312165251347131. Epub 2025 May 30.
Speech-comprehension difficulties are common among older people. Standard speech tests do not fully capture such difficulties because the tests poorly resemble the context-rich, story-like nature of ongoing conversation and are typically available only in a country's dominant/official language (e.g., English), leading to inaccurate scores for native speakers of other languages. Assessments for naturalistic, story speech in multiple languages require accurate, time-efficient scoring. The current research leverages modern large language models (LLMs) in native English speakers and native speakers of 10 other languages to automate the generation of high-quality, spoken stories and scoring of speech recall in different languages. Participants listened to and freely recalled short stories (in quiet/clear and in babble noise) in their native language. Large language model text-embeddings and LLM prompt engineering with semantic similarity analyses to score speech recall revealed sensitivity to known effects of temporal order, primacy/recency, and background noise, and high similarity of recall scores across languages. The work overcomes limitations associated with simple speech materials and testing of closed native-speaker groups because recall data of varying length and details can be mapped across languages with high accuracy. The full automation of speech generation and recall scoring provides an important step toward comprehension assessments of naturalistic speech with clinical applicability.
言语理解困难在老年人中很常见。标准的言语测试不能完全捕捉到这些困难,因为这些测试与日常对话中丰富的语境、类似故事的性质不太相似,而且通常只提供所在国家的主要/官方语言(如英语)版本,导致其他语言的母语使用者得分不准确。对多种语言的自然故事性言语进行评估需要准确、高效的评分。当前的研究利用现代大语言模型(LLM)对以英语为母语的人和其他10种语言的母语使用者进行研究,以自动生成高质量的口语故事并对不同语言的言语回忆进行评分。参与者听并自由回忆用他们的母语讲述的短篇小说(在安静/清晰和嘈杂的环境中)。通过大语言模型文本嵌入和带有语义相似性分析的大语言模型提示工程来对言语回忆进行评分,结果显示其对时间顺序、首因/近因以及背景噪音的已知影响具有敏感性,并且不同语言的回忆分数具有高度相似性。这项工作克服了与简单言语材料以及对特定母语使用者群体进行测试相关的局限性,因为不同长度和细节的回忆数据可以在不同语言之间进行高精度映射。言语生成和回忆评分的完全自动化为具有临床适用性的自然言语理解评估迈出了重要一步。