Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States.
Elife. 2021 Mar 11;10:e62046. doi: 10.7554/eLife.62046.
Replication and repair of genomic DNA requires the actions of multiple enzymatic functions that must be coordinated in order to ensure efficient and accurate product formation. Here, we have used single-molecule FRET microscopy to investigate the physical basis of functional coordination in DNA polymerase I (Pol I) from , a key enzyme involved in lagging-strand replication and base excision repair. Pol I contains active sites for template-directed DNA polymerization and 5' flap processing in separate domains. We show that a DNA substrate can spontaneously transfer between polymerase and 5' nuclease domains during a single encounter with Pol I. Additionally, we show that the flexibly tethered 5' nuclease domain adopts different positions within Pol I-DNA complexes, depending on the nature of the DNA substrate. Our results reveal the structural dynamics that underlie functional coordination in Pol I and are likely relevant to other multi-functional DNA polymerases.
基因组 DNA 的复制和修复需要多种酶的作用,这些酶的功能必须协调一致,以确保高效和准确的产物形成。在这里,我们使用单分子 FRET 显微镜研究了 DNA 聚合酶 I(Pol I)的功能协调的物理基础,Pol I 是参与滞后链复制和碱基切除修复的关键酶。Pol I 包含模板指导的 DNA 聚合和 5' 发夹处理的活性位点,分别位于不同的结构域中。我们表明,在与 Pol I 的单次接触中,DNA 底物可以在聚合酶和 5' 核酸酶结构域之间自发转移。此外,我们还表明,柔性连接的 5' 核酸酶结构域在 Pol I-DNA 复合物中采用不同的位置,这取决于 DNA 底物的性质。我们的结果揭示了 Pol I 中功能协调的结构动力学,这可能与其他多功能 DNA 聚合酶相关。