Institute of Physiology, Medical University Innsbruck, Innsbruck 6020, Austria.
Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany.
Brain. 2021 Aug 17;144(7):2092-2106. doi: 10.1093/brain/awab101.
T-type calcium channels (Cav3.1 to Cav3.3) regulate low-threshold calcium spikes, burst firing and rhythmic oscillations of neurons and are involved in sensory processing, sleep, and hormone and neurotransmitter release. Here, we examined four heterozygous missense variants in CACNA1I, encoding the Cav3.3 channel, in patients with variable neurodevelopmental phenotypes. The p.(Ile860Met) variant, affecting a residue in the putative channel gate at the cytoplasmic end of the IIS6 segment, was identified in three family members with variable cognitive impairment. The de novo p.(Ile860Asn) variant, changing the same amino acid residue, was detected in a patient with severe developmental delay and seizures. In two additional individuals with global developmental delay, hypotonia, and epilepsy, the variants p.(Ile1306Thr) and p.(Met1425Ile), substituting residues at the cytoplasmic ends of IIIS5 and IIIS6, respectively, were found. Because structure modelling indicated that the amino acid substitutions differentially affect the mobility of the channel gate, we analysed possible effects on Cav3.3 channel function using patch-clamp analysis in HEK293T cells. The mutations resulted in slowed kinetics of current activation, inactivation, and deactivation, and in hyperpolarizing shifts of the voltage-dependence of activation and inactivation, with Cav3.3-I860N showing the strongest and Cav3.3-I860M the weakest effect. Structure modelling suggests that by introducing stabilizing hydrogen bonds the mutations slow the kinetics of the channel gate and cause the gain-of-function effect in Cav3.3 channels. The gating defects left-shifted and increased the window currents, resulting in increased calcium influx during repetitive action potentials and even at resting membrane potentials. Thus, calcium toxicity in neurons expressing the Cav3.3 variants is one likely cause of the neurodevelopmental phenotype. Computer modelling of thalamic reticular nuclei neurons indicated that the altered gating properties of the Cav3.3 disease variants lower the threshold and increase the duration and frequency of action potential firing. Expressing the Cav3.3-I860N/M mutants in mouse chromaffin cells shifted the mode of firing from low-threshold spikes and rebound burst firing with wild-type Cav3.3 to slow oscillations with Cav3.3-I860N and an intermediate firing mode with Cav3.3-I860M, respectively. Such neuronal hyper-excitability could explain seizures in the patient with the p.(Ile860Asn) mutation. Thus, our study implicates CACNA1I gain-of-function mutations in neurodevelopmental disorders, with a phenotypic spectrum ranging from borderline intellectual functioning to a severe neurodevelopmental disorder with epilepsy.
T 型钙通道(Cav3.1 至 Cav3.3)调节低阈值钙峰、爆发放电和神经元的节律性振荡,并参与感觉处理、睡眠以及激素和神经递质的释放。在这里,我们在具有可变神经发育表型的患者中检查了 CACNA1I 中四个杂合错义变体,该基因编码 Cav3.3 通道。影响 IIS6 片段细胞质末端通道门的残基的 p.(Ile860Met)变体在三个具有可变认知障碍的家族成员中被鉴定出来。在患有严重发育迟缓、癫痫发作的患者中检测到了新生的 p.(Ile860Asn)变体,该变体改变了相同的氨基酸残基。在另外两个具有全面发育迟缓、张力减退和癫痫的个体中,发现了变体 p.(Ile1306Thr)和 p.(Met1425Ile),它们分别取代了 IIIS5 和 IIIS6 的细胞质末端的氨基酸残基。由于结构建模表明氨基酸取代会以不同的方式影响通道门的移动性,因此我们使用 HEK293T 细胞中的膜片钳分析来研究 Cav3.3 通道功能的可能影响。突变导致电流激活、失活和去激活的动力学减慢,以及激活和失活的电压依赖性发生超极化偏移,其中 Cav3.3-I860N 表现出最强的作用,而 Cav3.3-I860M 表现出最弱的作用。结构建模表明,通过引入稳定的氢键,突变会减慢通道门的动力学,并导致 Cav3.3 通道的功能获得效应。门控缺陷向左移动并增加了窗口电流,导致在重复动作电位期间甚至在静息膜电位时钙离子内流增加。因此,表达 Cav3.3 变体的神经元中的钙毒性是神经发育表型的一个可能原因。丘脑网状核神经元的计算机建模表明,Cav3.3 疾病变体的改变门控特性降低了阈值并增加了动作电位的持续时间和频率。在小鼠嗜铬细胞瘤中表达 Cav3.3-I860N/M 突变体将放电模式从 Cav3.3 野生型的低阈值尖峰和反弹爆发放电转变为 Cav3.3-I860N 的缓慢振荡和 Cav3.3-I860M 的中间放电模式。这种神经元的过度兴奋可以解释患有 p.(Ile860Asn)突变的患者的癫痫发作。因此,我们的研究表明 CACNA1I 功能获得性突变与神经发育障碍有关,表型谱从边缘智力障碍到伴有癫痫发作的严重神经发育障碍。