El Ghaleb Yousra, Fernández-Quintero Monica L, Campiglio Marta, Tuluc Petronel, Höing Ann-Sophie, Kortüm Fanny, Motazacker Mahdi M, Jansen Iris E, Elting Mariet W, Plomp Astrid S, Fischer Anna-Lena M, Siu Victoria M, Kutsche Kerstin, Flucher Bernhard E
Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria.
Institute of Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria.
PLoS Genet. 2025 Aug 18;21(8):e1011828. doi: 10.1371/journal.pgen.1011828. eCollection 2025 Aug.
The T-type voltage-gated calcium channel CaV3.3 is expressed in GABAergic neurons of the thalamic reticular nucleus (TRN), where its pacemaking activity controls sleep spindle rhythmogenesis during the non-rapid eye movement (NREM) phase of natural sleep. Previously, we established CACNA1I, the gene coding for CaV3.3, as a disease gene for neurodevelopmental disease with or without epilepsy. Here we report three newly identified activation-gate-modifying heterozygous missense variants of CACNA1I, found in four unrelated patients with neurodevelopmental disease with or without seizures. One of these variants, p.(Met1425Val), is an amino-acid substitution at the same position as previously published variant p.(Met1425Ile). Notably, the other two variants studied here are also a pair of two different substitutions of the same amino acid: p.(Ala398Val) and p.(Ala398Glu). By using site-directed mutagenesis, voltage-clamp electrophysiology, computational modelling of neuronal excitability, and structure modelling, we found that the two substitutions of M1425 both result in a gain of channel function including left-shifted voltage-dependence of activation and inactivation, slowed inactivation and deactivation kinetics, and increased neuronal excitability. Remarkably, the two substitutions of A398 show opposite effects on channel function. While substitution A398E leads to a gain of channel function, A398V results in decreased current density, accelerated gating kinetics, and a decreased neuronal excitability. The lack of seizures in the two independent p.(Ala398Val) patients correlates with the absence of increased neuronal excitability in this variant. This is the first report of a gate-modifying CaV3.3 channel variant with partial loss-of-function effects associated with developmental delay and intellectual disability without seizures. Our study corroborates the role of CaV3.3 dysfunction in the etiology of neurodevelopmental disorders. Moreover, our data suggest that substantial gain-of-function of CaV3.3 leads to the development of seizures, whereas both gain- and loss-of-function variants of CACNA1I can cause neurodevelopmental disease.
T型电压门控钙通道CaV3.3在丘脑网状核(TRN)的γ-氨基丁酸能神经元中表达,其起搏活动在自然睡眠的非快速眼动(NREM)阶段控制睡眠纺锤波节律的产生。此前,我们将编码CaV3.3的基因CACNA1I确定为患有或未患有癫痫的神经发育疾病的致病基因。在此,我们报告了在四名患有或未患有癫痫发作的神经发育疾病的无关患者中发现的三个新鉴定的CACNA1I激活门修饰杂合错义变体。其中一个变体p.(Met1425Val),是与先前发表的变体p.(Met1425Ile)相同位置的氨基酸替换。值得注意的是,这里研究的另外两个变体也是同一氨基酸的一对两种不同替换:p.(Ala398Val)和p.(Ala398Glu)。通过使用定点诱变、电压钳电生理学、神经元兴奋性的计算建模和结构建模,我们发现M1425的两种替换均导致通道功能增强,包括激活和失活的电压依赖性左移、失活和去激活动力学减慢以及神经元兴奋性增加。值得注意的是,A398的两种替换对通道功能显示出相反的影响。虽然替换A398E导致通道功能增强,但A398V导致电流密度降低、门控动力学加速以及神经元兴奋性降低。两名独立的p.(Ala398Val)患者未出现癫痫发作,这与该变体中神经元兴奋性未增加相关。这是首次报道具有部分功能丧失效应的门修饰CaV3.3通道变体与发育迟缓及无癫痫发作的智力残疾相关。我们的研究证实了CaV3.3功能障碍在神经发育障碍病因学中的作用。此外,我们的数据表明CaV3.3的显著功能增强会导致癫痫发作的发生,而CACNA1I的功能增强和功能丧失变体均可导致神经发育疾病。