Suppr超能文献

用于肝癌CT扫描肿瘤治疗结果和终点评估的深度学习

Deep learning for oncologic treatment outcomes and endpoints evaluation from CT scans in liver cancer.

作者信息

Xia Yujia, Zhou Jie, Xun Xiaolei, Johnston Luke, Wei Ting, Gao Ruitian, Zhang Yufei, Reddy Bobby, Liu Chao, Kim Geoffrey, Zhang Jin, Zhao Shuai, Yu Zhangsheng

机构信息

Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.

SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

NPJ Precis Oncol. 2024 Nov 17;8(1):263. doi: 10.1038/s41698-024-00754-z.

Abstract

Accurate treatment response assessment using serial CT scans is essential in oncological clinical trials. However, oncologists' assessment following the Response Evaluation Criteria in Solid Tumors (RECIST) guideline is subjective, time-consuming, and sometimes fallible. Advanced liver cancer often presents multifocal hepatic lesions on CT imaging, making accurate characterization more challenging than with other malignancies. In this work, we developed a tumor volume guided comprehensive objective response evaluation based on deep learning (RECORD) for liver cancer. RECORD performs liver tumor segmentation, followed by sum of the volume (SOV)-based treatment response classification and new lesion assessment. Then, it can provide treatment evaluations of response, stability, and progression, and calculates progression-free survival (PFS) and response time. The RECORD pipeline was developed with both CNN and ViT backbones. Its performance was evaluated in three longitudinal cohorts involving 60 multi-national centers, 206 patients, 891 CT scans, using internal five-fold cross-validation and external validations. RECORD with the most effective backbone achieved an average AUC-response of 0.981, AUC-stable of 0.929, and AUC-progression of 0.969 for SOV-based disease status classification, F1-score of 0.887 for new lesion identification, and accuracy of 0.889 for final treatment outcome assessments across all cohorts. RECORD's PFS and response time predictions strongly correlated with clinician's assessments (P < 0.001). Moreover, RECORD can better stratify high-risk versus low-risk patients for overall survival compared to the human-assessed RECIST results. In conclusion, RECORD demonstrates efficiency and objectivity in analyzing liver lesions for treatment response evaluation. Further research should extend the pipeline to other metastatic organ sites.

摘要

在肿瘤学临床试验中,使用系列CT扫描进行准确的治疗反应评估至关重要。然而,肿瘤学家依据实体瘤疗效评价标准(RECIST)指南进行的评估具有主观性、耗时且有时易出错。晚期肝癌在CT成像上常呈现多灶性肝脏病变,这使得准确特征化比其他恶性肿瘤更具挑战性。在这项工作中,我们开发了一种基于深度学习的肝癌肿瘤体积引导综合客观反应评估方法(RECORD)。RECORD先进行肝肿瘤分割,然后基于体积总和(SOV)进行治疗反应分类和新病灶评估。接着,它可以提供反应、稳定和进展的治疗评估,并计算无进展生存期(PFS)和反应时间。RECORD流程是基于卷积神经网络(CNN)和视觉Transformer(ViT)骨干网络开发的。使用内部五折交叉验证和外部验证,在涉及60个多国家中心、206名患者、891次CT扫描的三个纵向队列中评估了其性能。对于基于SOV的疾病状态分类,具有最有效骨干网络的RECORD实现了平均反应曲线下面积(AUC-response)为0.981、稳定曲线下面积(AUC-stable)为0.929、进展曲线下面积(AUC-progression)为0.969,新病灶识别的F1分数为0.887,所有队列最终治疗结果评估的准确率为0.889。RECORD的PFS和反应时间预测与临床医生的评估高度相关(P < 0.001)。此外,与人工评估的RECIST结果相比,RECORD在总体生存方面能更好地将高危患者与低危患者分层。总之,RECORD在分析肝脏病变以进行治疗反应评估方面展现出了效率和客观性。进一步的研究应将该流程扩展到其他转移器官部位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5b2/11570623/bc0b50e1ad02/41698_2024_754_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验