Wang Nianyi, Wang Weilan, Hu Wenjin, Fenster Aaron, Li Shuo
IEEE Trans Image Process. 2021;30:3720-3733. doi: 10.1109/TIP.2021.3064268. Epub 2021 Mar 17.
Thanka murals are important cultural heritages of Tibet, but many precious murals were damaged during history. Thanka mural restoration is very important for the protection of Tibetan cultural heritage. Partial convolution has great potential for Thanka mural restoration due to its outstanding performance for inpainting irregular holes. However, three challenges prevent the existing partial convolution-based methods from solving Thanka restoration problems: 1) the features of multi-scale objects in Thanka murals cannot be extracted correctly because of single-scale partial convolution; 2) the stroke-like Thanka inpainting mode cannot be effectively simulated and learned by existing rectangular or arbitrary masks; and 3) the original content of damaged Thanka murals cannot be restored. To resolve these problems, we propose a Thanka mural inpainting method based on multi-scale adaptive partial convolution and stroke-like masks. The proposed method consists of three parts: 1) a kernel-level multi-scale adaptive partial convolution (MAPConv) to accurately discriminate valid pixels from invalid pixels, and to extract the features of multi-scale objects; 2) a parameter-configurable stroke-like mask generation method to simulate and learn the stroke-like Thanka inpainting mode; and 3) a 2-phase learning framework based on MAPConv Unet and different loss functions to restore the original content of Thanka murals. Experiments on both simulated and real damages of Thanka murals demonstrated that our approach works well on a small dataset (N=2780), generates realistic mural content, and restores the damaged Thanka murals with high speed (600 ms for multiple holes in 512×512 images). The proposed end-to-end method can be applied to other small datasets-based inpainting tasks.
唐卡壁画是西藏重要的文化遗产,但许多珍贵的唐卡壁画在历史上遭到了破坏。唐卡壁画修复对于保护藏族文化遗产非常重要。由于部分卷积在修复不规则孔洞方面表现出色,因此在唐卡壁画修复中具有很大潜力。然而,存在三个挑战阻碍了现有的基于部分卷积的方法解决唐卡修复问题:1)由于单尺度部分卷积,唐卡壁画中多尺度物体的特征无法被正确提取;2)现有的矩形或任意掩码无法有效地模拟和学习笔触状的唐卡修复模式;3)受损唐卡壁画的原始内容无法恢复。为了解决这些问题,我们提出了一种基于多尺度自适应部分卷积和笔触状掩码的唐卡壁画修复方法。该方法由三个部分组成:1)内核级多尺度自适应部分卷积(MAPConv),用于准确区分有效像素和无效像素,并提取多尺度物体的特征;2)参数可配置的笔触状掩码生成方法,用于模拟和学习笔触状的唐卡修复模式;3)基于MAPConv Unet和不同损失函数的两阶段学习框架,用于恢复唐卡壁画的原始内容。对唐卡壁画的模拟和实际损坏情况进行的实验表明,我们的方法在小数据集(N = 2780)上效果良好,生成了逼真的壁画内容,并能高速恢复受损的唐卡壁画(对于512×512图像中的多个孔洞,耗时600毫秒)。所提出的端到端方法可应用于其他基于小数据集的修复任务。