Suppr超能文献

基于可分离掩码更新卷积网络的图像修复

Inpainting with Separable Mask Update Convolution Network.

作者信息

Gong Jun, Luo Senlin, Yu Wenxin, Nie Liang

机构信息

Information System and Security & Countermeasures Experimental Center, Beijing Institute of Technology, Beijing 100081, China.

School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China.

出版信息

Sensors (Basel). 2023 Jul 26;23(15):6689. doi: 10.3390/s23156689.

Abstract

Image inpainting is an active area of research in image processing that focuses on reconstructing damaged or missing parts of an image. The advent of deep learning has greatly advanced the field of image restoration in recent years. While there are many existing methods that can produce high-quality restoration results, they often struggle when dealing with images that have large missing areas, resulting in blurry and artifact-filled outcomes. This is primarily because of the presence of invalid information in the inpainting region, which interferes with the inpainting process. To tackle this challenge, the paper proposes a novel approach called separable mask update convolution. This technique automatically learns and updates the mask, which represents the missing area, to better control the influence of invalid information within the mask area on the restoration results. Furthermore, this convolution method reduces the number of network parameters and the size of the model. The paper also introduces a regional normalization technique that collaborates with separable mask update convolution layers for improved feature extraction, thereby enhancing the quality of the restored image. Experimental results demonstrate that the proposed method performs well in restoring images with large missing areas and outperforms state-of-the-art image inpainting methods significantly in terms of image quality.

摘要

图像修复是图像处理领域中一个活跃的研究方向,专注于重建图像中受损或缺失的部分。近年来,深度学习的出现极大地推动了图像恢复领域的发展。虽然现有的许多方法能够产生高质量的恢复结果,但在处理存在大面积缺失区域的图像时,它们往往会遇到困难,导致结果模糊且充满伪像。这主要是因为在修复区域中存在无效信息,干扰了修复过程。为应对这一挑战,本文提出了一种名为可分离掩码更新卷积的新方法。该技术自动学习并更新表示缺失区域的掩码,以更好地控制掩码区域内无效信息对恢复结果的影响。此外,这种卷积方法减少了网络参数的数量和模型的大小。本文还引入了一种区域归一化技术,该技术与可分离掩码更新卷积层协作以改进特征提取,从而提高恢复图像的质量。实验结果表明,所提出的方法在恢复具有大面积缺失区域的图像方面表现良好,并且在图像质量方面显著优于当前最先进的图像修复方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3510/10422227/e1db04252ab3/sensors-23-06689-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验