Suppr超能文献

高效多任务多核学习及其在癌症研究中的应用。

Efficient Multitask Multiple Kernel Learning With Application to Cancer Research.

出版信息

IEEE Trans Cybern. 2022 Sep;52(9):8716-8728. doi: 10.1109/TCYB.2021.3052357. Epub 2022 Aug 18.

Abstract

Multitask multiple kernel learning (MKL) algorithms combine the capabilities of incorporating different data sources into the prediction model and using the data from one task to improve the accuracy on others. However, these methods do not necessarily produce interpretable results. Restricting the solutions to the set of interpretable solutions increases the computational burden of the learning problem significantly, leading to computationally prohibitive run times for some important biomedical applications. That is why we propose a multitask MKL formulation with a clustering of tasks and develop a highly time-efficient solution approach for it. Our solution method is based on the Benders decomposition and treating the clustering problem as finding a given number of tree structures in a graph; hence, it is called the forest formulation. We use our method to discriminate early-stage and late-stage cancers using genomic data and gene sets and compare our algorithm against two other algorithms. The two other algorithms are based on different approaches for linearization of the problem while all algorithms make use of the cutting-plane method. Our results indicate that as the number of tasks and/or the number of desired clusters increase, the forest formulation becomes increasingly favorable in terms of computational performance.

摘要

多任务多核学习(MKL)算法结合了将不同数据源纳入预测模型的能力,并利用一个任务的数据来提高其他任务的准确性。然而,这些方法不一定能产生可解释的结果。将解决方案限制在可解释的解决方案集中会显著增加学习问题的计算负担,从而导致一些重要的生物医学应用的计算时间过长。这就是为什么我们提出了一种具有任务聚类的多任务 MKL 公式,并为其开发了一种高效的解决方案。我们的解决方案方法基于 Benders 分解,并将聚类问题视为在图中找到给定数量的树结构;因此,它被称为森林公式。我们使用基因组数据和基因集来区分早期和晚期癌症,并将我们的算法与另外两种算法进行比较。另外两种算法基于问题线性化的不同方法,而所有算法都使用割平面方法。我们的结果表明,随着任务数量和/或所需聚类数量的增加,森林公式在计算性能方面变得越来越有利。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验