Suppr超能文献

影响白念珠菌双链断裂修复导致双向长片段纯合子形成的因素。

Factors that influence bidirectional long-tract homozygosis due to double-strand break repair in Candida albicans.

机构信息

Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France.

Université Paris Diderot, Sorbonne Paris Cité, Paris, France.

出版信息

Genetics. 2021 May 17;218(1). doi: 10.1093/genetics/iyab028.

Abstract

Genomic rearrangements have been associated with the acquisition of adaptive phenotypes, allowing organisms to efficiently generate new favorable genetic combinations. The diploid genome of Candida albicans is highly plastic, displaying numerous genomic rearrangements that are often the by-product of the repair of DNA breaks. For example, DNA double-strand breaks (DSB) repair using homologous-recombination pathways are a major source of loss-of-heterozygosity (LOH), observed ubiquitously in both clinical and laboratory strains of C. albicans. Mechanisms such as break-induced replication (BIR) or mitotic crossover (MCO) can result in long tracts of LOH, spanning hundreds of kilobases until the telomere. Analysis of I-SceI-induced BIR/MCO tracts in C. albicans revealed that the homozygosis tracts can ascend several kilobases toward the centromere, displaying homozygosis from the break site toward the centromere. We sought to investigate the molecular mechanisms that could contribute to this phenotype by characterizing a series of C. albicans DNA repair mutants, including pol32-/-, msh2-/-, mph1-/-, and mus81-/-. The impact of deleting these genes on genome stability revealed functional differences between Saccharomyces cerevisiae (a model DNA repair organism) and C. albicans. In addition, we demonstrated that ascending LOH tracts toward the centromere are associated with intrinsic features of BIR and potentially involve the mismatch repair pathway which acts upon natural heterozygous positions. Overall, this mechanistic approach to study LOH deepens our limited characterization of DNA repair pathways in C. albicans and brings forth the notion that centromere proximal alleles from DNA break sites are not guarded from undergoing LOH.

摘要

基因组重排与获得适应性表型有关,使生物体能够有效地产生新的有利遗传组合。白色念珠菌的二倍体基因组具有高度的可塑性,显示出许多基因组重排,这些重排通常是 DNA 断裂修复的副产物。例如,使用同源重组途径修复 DNA 双链断裂 (DSB) 是杂合性丢失 (LOH) 的主要来源,在白色念珠菌的临床和实验室菌株中普遍存在。例如,断裂诱导复制 (BIR) 或有丝分裂交叉 (MCO) 等机制可能导致长段的 LOH,跨越数百个千碱基直到端粒。对 I-SceI 诱导的 BIR/MCO 片段在白色念珠菌中的分析表明,同型合子片段可以向着着丝粒上升几个千碱基,显示出从断裂点向着丝粒的同型合子。我们试图通过表征一系列白色念珠菌 DNA 修复突变体,包括 pol32-/-, msh2-/-, mph1-/-, 和 mus81-/-, 来研究导致这种表型的分子机制。这些基因的缺失对基因组稳定性的影响揭示了酿酒酵母 (一种模型 DNA 修复生物) 和白色念珠菌之间的功能差异。此外,我们证明了向着丝粒上升的 LOH 片段与 BIR 的内在特征有关,并且可能涉及错配修复途径,该途径作用于自然杂合位置。总的来说,这种研究 LOH 的机制方法加深了我们对白色念珠菌 DNA 修复途径的有限认识,并提出了从 DNA 断裂点到着丝粒近端等位基因不受 LOH 影响的观点。

相似文献

8
Investigation of Break-Induced Replication in Yeast.酵母中断裂诱导复制的研究。
Methods Enzymol. 2018;601:161-203. doi: 10.1016/bs.mie.2017.12.010. Epub 2018 Feb 3.

本文引用的文献

1
Genomic Instability in Fungal Plant Pathogens.真菌植物病原体中的基因组不稳定性。
Genes (Basel). 2020 Apr 14;11(4):421. doi: 10.3390/genes11040421.
3
Chromatin remodeling and mismatch repair: Access and excision.染色质重塑和错配修复:进入和切除。
DNA Repair (Amst). 2020 Jan;85:102733. doi: 10.1016/j.dnarep.2019.102733. Epub 2019 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验